scholarly journals The Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen 1 N Terminus Is Essential for Chromosome Association, DNA Replication, and Episome Persistence

2004 ◽  
Vol 78 (1) ◽  
pp. 294-301 ◽  
Author(s):  
Andrew J. Barbera ◽  
Mary E. Ballestas ◽  
Kenneth M. Kaye

ABSTRACT To persist in latently infected, proliferating cells, Kaposi's sarcoma-associated herpesvirus (KSHV) episomes must replicate and efficiently segregate to progeny nuclei. Episome persistence in uninfected cells requires latency-associated nuclear antigen 1 (LANA1) in trans and cis-acting KSHV terminal repeat (TR) DNA. The LANA1 C terminus binds TR DNA, and LANA1 mediates TR-associated DNA replication in transient assays. LANA1 also concentrates at sites of KSHV TR DNA episomes along mitotic chromosomes, consistent with a tethering role to efficiently segregate episomes to progeny nuclei. LANA1 amino acids 5 to 22 constitute a chromosome association region (Piolot et al., J. Virol. 75:3948-3959, 2001). We now investigate LANA1 residues 5 to 22 with scanning alanine substitutions. Mutations targeting LANA1 5GMR7, 8LRS10, and 11GRS13 eliminated chromosome association, DNA replication, and episome persistence. LANA1 mutated at 14TG15 retained the ability to associate with chromosomes but was partially deficient in DNA replication and episome persistence. These results provide genetic support for a key role of the LANA1 N terminus in chromosome association, LANA1-mediated DNA replication, and episome persistence.

2004 ◽  
Vol 85 (4) ◽  
pp. 843-855 ◽  
Author(s):  
Chunghun Lim ◽  
Taegun Seo ◽  
Jun Jung ◽  
Joonho Choe

Latency-associated nuclear antigen 1 (LANA1) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays a pivotal role in the maintenance of the virus genome in latently infected cells. LANA1 links virus genomes to host chromosomes via a C-terminal DNA-binding domain which interacts with the sequences located in terminal repeats (TRs) of the virus genome and via an N-terminal chromosome-binding sequence which associates with the host chromosomes, respectively. Recent data suggest that LANA1 also actively participates in the replication of KSHV TR-containing plasmid in the transient DNA replication assay. In this report, it was found that C33A and COS-1, but not NIH/3T3, cell lines are permissive for the transient replication of KSHV TR-containing plasmid. Using several LANA1-deletion mutants, the minimum domain of LANA1 required for replication activity was also determined. In addition, the N terminus of LANA1 inhibited the transient replication systems of KSHV and Epstein–Barr virus (EBV) in transiently transfected 293 and 293T cells, but the C terminus of LANA1 specifically inhibited the transient replication system of KSHV in other cell lines. Consistent with previous reports, these data further emphasize the functional importance of the N terminus of LANA1 on replication from the KSHV latent origin of DNA replication.


2007 ◽  
Vol 81 (8) ◽  
pp. 4348-4356 ◽  
Author(s):  
Brenna Kelley-Clarke ◽  
Mary E. Ballestas ◽  
Viswanathan Srinivasan ◽  
Andrew J. Barbera ◽  
Takashi Komatsu ◽  
...  

ABSTRACT Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen (LANA) tethers viral terminal repeat (TR) DNA to mitotic chromosomes to mediate episome persistence. The 1,162-amino-acid LANA protein contains both N- and C-terminal chromosome attachment regions. The LANA C-terminal domain self-associates to specifically bind TR DNA and mitotic chromosomes. Here, we used alanine scanning substitutions spanning residues 1023 to 1145 to investigate LANA self-association, DNA binding, and C-terminal chromosome association. No residues were essential for LANA oligomerization, as assayed by coimmunoprecipitation experiments, consistent with redundant roles for amino acids in self-association. Different subsets of amino acids were important for DNA binding, as assayed by electrophoretic mobility shift assay, and mitotic chromosome association, indicating that distinct C-terminal LANA subdomains effect DNA and chromosome binding. The DNA binding domains of LANA and EBNA1 are predicted to be structurally homologous; certain LANA residues important for DNA binding correspond to those with roles in EBNA1 DNA binding, providing genetic support for at least partial structural homology. In contrast to the essential role of N-terminal LANA chromosome targeting residues in DNA replication, deficient C-terminal chromosome association did not reduce LANA-mediated DNA replication.


2005 ◽  
Vol 79 (21) ◽  
pp. 13829-13836 ◽  
Author(s):  
Lai-Yee Wong ◽  
Angus C. Wilson

ABSTRACT During latency, the Kaposi's sarcoma-associated herpesvirus genome is maintained as a circular episome, replicating in synchrony with host chromosomes. Replication requires the latency-associated nuclear antigen (LANA) and an origin of latent DNA replication located in the viral terminal repeats, consisting of two LANA binding sites (LBSs) and a GC-rich sequence. Here, we show that the recruitment of a LANA dimer to high-affinity site LBS-1 bends DNA by 57° and towards the major groove. The cooccupancy of LBS-1 and lower-affinity LBS-2 induces a symmetrical bend of 110°. By changing the origin architecture, LANA may help to assemble a specific nucleoprotein structure important for the initiation of DNA replication.


2015 ◽  
Vol 89 (20) ◽  
pp. 10206-10218 ◽  
Author(s):  
Zhiguo Sun ◽  
Hem Chandra Jha ◽  
Erle S. Robertson

ABSTRACTLatent DNA replication of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates at the terminal repeat (TR) element and requirestrans-acting elements, both viral and cellular, such as ORCs, MCMs, and latency-associated nuclear antigen (LANA). However, how cellular proteins are recruited to the viral genome is not very clear. Here, we demonstrated that the host cellular protein, Bub1, is involved in KSHV latent DNA replication. We show that Bub1 constitutively interacts with proliferating cell nuclear antigen (PCNA) via a highly conserved PIP box motif within the kinase domain. Furthermore, we demonstrated that Bub1 can form a complex with LANA and PCNA in KSHV-positive cells. This strongly indicated that Bub1 serves as a scaffold or molecular bridge between LANA and PCNA. LANA recruited PCNA to the KSHV genome via Bub1 to initiate viral replication in S phase and interacted with PCNA to promote its monoubiquitination in response to UV-induced damage for translesion DNA synthesis. This resulted in increased survival of KSHV-infected cells.IMPORTANCEDuring latency in KSHV-infected cells, the viral episomal DNA replicates once each cell cycle. KSHV does not express DNA replication proteins during latency. Instead, KSHV LANA recruits the host cell DNA replication machinery to the replication origin. However, the mechanism by which LANA mediates replication is uncertain. Here, we show that LANA is able to form a complex with PCNA, a critical protein for viral DNA replication. Furthermore, our findings suggest that Bub1, a spindle checkpoint protein, serves as a scaffold or molecular bridge between LANA and PCNA. Our data further support a role for Bub1 and LANA in PCNA-mediated cellular DNA replication processes as well as monoubiquitination of PCNA in response to UV damage. These data reveal a therapeutic target for inhibition of KSHV persistence in malignant cells.


2009 ◽  
Vol 83 (9) ◽  
pp. 4326-4337 ◽  
Author(s):  
Brenna Kelley-Clarke ◽  
Erika De Leon-Vazquez ◽  
Katherine Slain ◽  
Andrew J. Barbera ◽  
Kenneth M. Kaye

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) LANA is an 1,162-amino-acid protein that tethers terminal repeat (TR) DNA to mitotic chromosomes to mediate episome persistence in dividing cells. C-terminal LANA self-associates to bind TR DNA. LANA contains independent N- and C-terminal chromosome binding regions. N-terminal LANA binds histones H2A/H2B to attach to chromosomes, and this binding is essential for episome persistence. We now investigate the role of C-terminal chromosome binding in LANA function. Alanine substitutions for LANA residues 1068LKK1070 and 1125SHP1127 severely impaired chromosome binding but did not reduce the other C-terminal LANA functions of self-association or DNA binding. The 1068LKK1070 and 1125SHP1127 substitutions did not reduce LANA's inhibition of RB1-induced growth arrest, transactivation of the CDK2 promoter, or C-terminal LANA's inhibition of p53 activation of the BAX promoter. When N-terminal LANA was wild type, the 1068LKK1070 and 1125SHP1127 substitutions also did not reduce LANA chromosome association or episome persistence. However, when N-terminal LANA binding to chromosomes was modestly diminished, the substitutions in 1068LKK1070 and 1125SHP1127 dramatically reduced both LANA chromosome association and episome persistence. These data suggest a model in which N- and C-terminal LANA cooperatively associates with chromosomes to mediate full-length LANA chromosome binding and viral persistence.


2009 ◽  
Vol 83 (21) ◽  
pp. 11051-11063 ◽  
Author(s):  
Jianhong Hu ◽  
Eugene Liu ◽  
Rolf Renne

ABSTRACT Kaposi's sarcoma-associated herpesvirus (also named human herpesvirus 8) is a γ-herpesvirus that undergoes both lytic and latent infection. During latent infection, two viral elements are required: latency-associated nuclear antigen (LANA), which functions as an origin binding protein, and the latent origin, which resides within the terminal repeats (TRs) of the viral genome. Previously, we identified two cis-elements within the TRs which are required for latent DNA replication: two LANA binding sites (LBS1 and LBS2 [LBS1/2]) and a GC-rich replication element (RE) upstream of LBS1/2. To further characterize the RE, we constructed a 71-bp minimal replicon (MR) and performed a detailed mutational analysis. Our data indicate that the first 8 nucleotides within the RE are critical for replication. Moreover, both the position and the distance between the RE and LBS1/2 can affect origin replication activity, suggesting that the RE may function as a loading pad for cellular proteins involved in replication. Using biotinylated DNA fragments of wild-type or mutant MRs as probes, we identified 30 proteins that preferentially bind to the origin. Among these proteins, structure-specific recognition protein 1 (SSRP1), a subunit of the FACT complex, and telomeric repeat binding factor 2 (TRF2) formed complexes with LANA at the MR region. Furthermore, the small interfering RNA-based knockdown of SSRP1, but not the dominant-negative-based knockdown of TRF2, significantly decreased the efficiency of LANA-dependent DNA replication. These results indicate that SSRP1 is a novel cellular protein involved in LANA-dependent DNA replication.


2002 ◽  
Vol 76 (22) ◽  
pp. 11677-11687 ◽  
Author(s):  
Jianhong Hu ◽  
Alexander C. Garber ◽  
Rolf Renne

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The latency-associated nuclear antigen (LANA) is a multifunctional protein that is consistently expressed in all KSHV-associated malignancies. LANA interacts with a variety of cellular proteins, including the transcriptional cosuppressor complex mSin3 and the tumor suppressors p53 and Rb, thereby regulating viral and cellular gene expression. In addition, LANA is required for maintenance of the episomal viral DNA during latency in dividing cells. Colocalization studies suggest that LANA tethers the viral genome to chromosomes during mitosis. In support of this model, a specific LANA- binding site has recently been identified within the terminal repeat unit, and a chromatin interaction domain was mapped to a short amino acid stretch within the N-terminal domain of LANA. Epstein-Barr virus nuclear antigen 1 (EBNA-1), a functional homologue of LANA, is also required for genome segregation; in addition, EBNA-1 also supports efficient DNA replication of oriP-containing plasmids. By performing short-term replication assays, we demonstrate here for the first time that de novo synthesis of terminal-repeat (TR)-containing plasmids is highly dependent on the presence of LANA. We map the required cis-acting sequences within the TR to a 79-bp region and demonstrate that the DNA-binding domain of LANA is required for this DNA replication activity. Surprisingly, the 233-amino-acid C domain of LANA by itself partially supports replication. Our data show that LANA is a sequence-specific DNA-binding protein that, like EBNA-1, plays an important role in DNA replication and genome segregation. In addition, we show that all necessary cis elements for the origin of replication (ori) function are located within a single TR, suggesting that the putative ori of KSHV is different from those of other gammaherpesviruses, which all contain ori sequences within the unique long sequence outside of their TR. This notion is further strengthened by the unique modular structure of the KSHV TR element.


2006 ◽  
Vol 80 (18) ◽  
pp. 8909-8919 ◽  
Author(s):  
Jianxin You ◽  
Viswanathan Srinivasan ◽  
Gerald V. Denis ◽  
William J. Harrington ◽  
Mary E. Ballestas ◽  
...  

ABSTRACT The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is required for viral episome maintenance in host cells during latent infection. Two regions of the protein have been implicated in tethering LANA/viral episomes to the host mitotic chromosomes, and LANA chromosome-binding sites are subjects of high interest. Because previous studies had identified bromodomain protein Brd4 as the mitotic chromosome anchor for the bovine papillomavirus E2 protein, which tethers the viral episomes to host mitotic chromosomes (J. You, J. L. Croyle, A. Nishimura, K. Ozato, and P. M. Howley, Cell 117:349-360, 2004, and J. You, M. R. Schweiger, and P. M. Howley, J. Virol. 79:14956-14961, 2005), we examined whether KSHV LANA interacts with Brd4. We found that LANA binds Brd4 in vivo and in vitro and that the binding is mediated by a direct protein-protein interaction between the ET (extraterminal) domain of Brd4 and a carboxyl-terminal region of LANA previously implicated in chromosome binding. Brd4 associates with mitotic chromosomes throughout mitosis and demonstrates a strong colocalization with LANA and the KSHV episomes on host mitotic chromosomes. Although another bromodomain protein, RING3/Brd2, binds to LANA in a similar fashion in vitro, it is largely excluded from the mitotic chromosomes in KSHV-uninfected cells and is partially recruited to the chromosomes in KSHV-infected cells. These data identify Brd4 as an interacting protein for the carboxyl terminus of LANA on mitotic chromosomes and suggest distinct functional roles for the two bromodomain proteins RING3/Brd2 and Brd4 in LANA binding. Additionally, because Brd4 has recently been shown to have a role in transcription, we examined whether Brd4 can regulate the CDK2 promoter, which can be transactivated by LANA.


2003 ◽  
Vol 77 (4) ◽  
pp. 2779-2783 ◽  
Author(s):  
Adam Grundhoff ◽  
Don Ganem

ABSTRACT The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus can associate with mitotic chromosomes and promote latent episome maintenance and segregation. Here we report that LANA also mediates the replication of plasmid DNAs bearing viral terminal repeats. The predicted secondary structure of LANA's C terminus reveals striking similarity to the known structure of the DNA-binding domain of Epstein-Barr virus EBNA1, despite the absence of primary sequence homology between these proteins, suggesting conservation of the key mechanistic features of latent gammaherpesvirus DNA replication.


Sign in / Sign up

Export Citation Format

Share Document