scholarly journals Identification of Internal Sequences in the 3′ Leader Region of Human Respiratory Syncytial Virus That Enhance Transcription and Confer Replication Processivity

2005 ◽  
Vol 79 (4) ◽  
pp. 2449-2460 ◽  
Author(s):  
David R. McGivern ◽  
Peter L. Collins ◽  
Rachel Fearns

ABSTRACT Previous studies of respiratory syncytial virus have shown that the 44-nucleotide (nt) leader (Le) region is sufficient to initiate RNA replication, producing antigenome RNA, and that the Le and adjoining gene start (GS) signal of the first gene are sufficient to initiate transcription, producing mRNA. A cis-acting element necessary for both transcription and replication was mapped within the first 11 nt at the 3′ end of Le. In the present study the remainder of the Le region was mapped to identify sequences important for transcription and replication. A series of minigenomes with mutant Le sequences was generated, and their ability to direct transcription and replication was determined by Northern blot analysis, which examined full-length antigenome and mRNA, and by primer extension analysis, which examined antigenome and mRNA initiation. With regard to transcription, nt 36 to 43, located immediately upstream of the GS signal, were found to be necessary for optimal levels of mRNA synthesis, although the GS signal in conjunction with the 3′-terminal region of Le was sufficient to direct accurate mRNA synthesis initiation. With regard to replication, the first 15 nt of Le were found to be sufficient to direct initiation of antigenome synthesis, but nt 16 to 34 were required in addition for efficient encapsidation and production of full-length antigenome. Analysis of transcripts produced from di- and tricistronic minigenomes indicated that a significant proportion of abortive replicases continue RNA synthesis to the end of the first gene and then continue in a transcription mode along the remainder of the genome.

2019 ◽  
Vol 295 (3) ◽  
pp. 883-895 ◽  
Author(s):  
Yunrong Gao ◽  
Dongdong Cao ◽  
Hyunjun Max Ahn ◽  
Anshuman Swain ◽  
Shaylan Hill ◽  
...  

The templates for transcription and replication by respiratory syncytial virus (RSV) polymerase are helical nucleocapsids (NCs), formed by viral RNAs that are encapsidated by the nucleoprotein (N). Proper NC assembly is vital for RSV polymerase to engage the RNA template for RNA synthesis. Previous studies of NCs or nucleocapsid-like particles (NCLPs) from RSV and other nonsegmented negative-sense RNA viruses have provided insights into the overall NC architecture. However, in these studies, the RNAs were either random cellular RNAs or average viral genomic RNAs. An in-depth mechanistic understanding of NCs has been hampered by lack of an in vitro assay that can track NC or NCLP assembly. Here we established a protocol to obtain RNA-free N protein (N0) and successfully demonstrated the utility of a new assay for tracking assembly of N with RNA oligonucleotides into NCLPs. We discovered that the efficiency of the NCLP (N–RNA) assembly depends on the length and sequence of the RNA incorporated into NCLPs. This work provides a framework to generate purified N0 and incorporate it with RNA into NCLPs in a controllable manner. We anticipate that our assay for in vitro trackable assembly of RSV-specific nucleocapsids may enable in-depth mechanistic analyses of this process.


2005 ◽  
Vol 79 (17) ◽  
pp. 11311-11322 ◽  
Author(s):  
Vanessa M. Cowton ◽  
Rachel Fearns

ABSTRACT The 3′-terminal end of the respiratory syncytial virus genomic RNA contains a 44-nucleotide leader (Le) region adjoining the gene start signal of the first gene. Previous mapping studies demonstrated that there is a promoter located at the 3′ end of Le, which can signal initiation of antigenome synthesis. The aim of this study was to investigate the role of the 3′ terminus of the RNA template in (i) promoter recognition and (ii) determining the initiation site for antigenome synthesis. A panel of minigenomes containing additional sequence at the 3′ end of the Le were analyzed for their ability to direct antigenome and mRNA synthesis. Minigenomes containing heterologous extensions of 6 nucleotides or more were unable to support efficient RNA synthesis. However, the activity of a minigenome with a 56-nucleotide extension could be restored by insertion of Le nucleotides 1 to 11 or 1 to 13 at the 3′ end, indicating that these nucleotides, in conjunction with the 3′ terminus, are sufficient to recruit polymerase to the template. Northern blot and 5′ rapid amplification of cDNA ends analysis of antigenome RNA indicated that antigenome initiation occurred at the first position of Le, irrespective of the terminal extension. This finding demonstrates that the 3′ terminus of the RNA is not necessary for determining the antigenome initiation site. Data are presented which suggest that following recruitment to a promoter at the 3′ end of Le, the polymerase is able to scan and respond to a promoter signal embedded within the RNA template.


Virology ◽  
2014 ◽  
Vol 462-463 ◽  
pp. 318-327 ◽  
Author(s):  
Sarah L. Noton ◽  
Waleed Aljabr ◽  
Julian A. Hiscox ◽  
David A. Matthews ◽  
Rachel Fearns

2008 ◽  
Vol 83 (4) ◽  
pp. 1930-1940 ◽  
Author(s):  
Jianrong Li ◽  
Amal Rahmeh ◽  
Vesna Brusic ◽  
Sean P. J. Whelan

ABSTRACT The multifunctional large (L) polymerase protein of vesicular stomatitis virus (VSV) contains enzymatic activities essential for RNA synthesis, including mRNA cap addition and polyadenylation. We previously mapped amino acid residues G1154, T1157, H1227, and R1228, present within conserved region V (CRV) of L, as essential for mRNA cap addition. Here we show that alanine substitutions to these residues also affect 3′-end formation. Specifically, the cap-defective polymerases produced truncated transcripts that contained A-rich sequences at their 3′ termini and predominantly terminated within the first 500 nucleotides (nt) of the N gene. To examine how the cap-defective polymerases respond to an authentic VSV termination and reinitiation signal present at each gene junction, we reconstituted RNA synthesis using templates that contained genes inserted (I) at the leader-N gene junction. The I genes ranged in size from 382 to 1,098 nt and were typically transcribed into full-length uncapped transcripts. In addition to lacking a cap structure, the full-length I transcripts synthesized by the cap-defective polymerases lacked an authentic polyadenylate tail and instead contained 0 to 24 A residues. Moreover, the cap-defective polymerases were also unable to copy efficiently the downstream gene. Thus, single amino acid substitutions in CRV of L protein that inhibit cap addition also inhibit polyadenylation and sequential transcription of the genome. In contrast, an amino acid substitution, K1651A, in CRVI of L protein that completely inhibits cap methylation results in the hyperpolyadenylation of mRNA. This work reveals that inhibiting cap addition and cap methylation have opposing effects on polyadenylation during VSV mRNA synthesis and provides evidence in support of a link between correct 5′ cap formation and 3′ polyadenylation.


2000 ◽  
Vol 74 (13) ◽  
pp. 6006-6014 ◽  
Author(s):  
Rachel Fearns ◽  
Peter L. Collins ◽  
Mark E. Peeples

ABSTRACT The promoters involved in transcription and RNA replication by respiratory syncytial virus (RSV) were examined by using a plasmid-based minireplicon system. The 3′ ends of the genome and antigenome, which, respectively, contain the 44-nucleotide (nt) leader (Le) and 155-nt trailer-complement (TrC) regions, should each contain a promoter for RNA replication. The 3′ genome end also should have the promoter for transcription. Substitution for the Le with various lengths of TrC demonstrated that the 3′-terminal 36 nt of TrC are sufficient for extensive (but not maximal) replication and that when juxtaposed with a transcription gene-start (GS) signal, this sequence was also able to direct transcription. It was also shown that the region of Le immediately preceding the GS signal of the first gene could be deleted with either no effect or with a slight decrease in transcription initiation. Thus, the TrC is competent to direct transcription even though it does not do so in nature, and the partial sequence identity it shares with the 3′ end of the genome likely represents the important elements of a conserved promoter active in both replication and transcription. Increasing the length of the introduced TrC sequence incrementally to 147 nt resulted in a fourfold increase in replication and a nearly complete inhibition of transcription. These two effects were unrelated, implying that transcription and replication are not interconvertible processes mediated by a common polymerase, but rather are independent processes. The increase in replication was specific to the TrC sequence, implying the presence of a nonessential, replication-enhancingcis-acting element. In contrast, the inhibitory effect on transcription was due solely to the altered spacing between the 3′ end of the genome and GS signal, which implies that the transcriptase recognizes the first GS signal as a promoter element. Neither the enhancement of replication nor the inhibition of transcription was due to increased base-pairing potential between the 3′ and 5′ ends. The relative strengths of the Le and TrC promoters for directing RNA synthesis were compared and found to be very similar. Thus, these findings highlighted a high degree of functional similarity between the RSV antigenomic and genomic promoters, but provided a further distinction between promoter requirements for transcription and replication.


2006 ◽  
Vol 87 (6) ◽  
pp. 1649-1658 ◽  
Author(s):  
Diana Martín ◽  
Lesley J. Calder ◽  
Blanca García-Barreno ◽  
John J. Skehel ◽  
José A. Melero

We have reported previously the expression and purification of an anchorless form of the human respiratory syncytial virus (HRSV) F protein () representing the ectodomain of the full-length F. molecules are seen as unaggregated cones by electron microscopy but completion of proteolytic cleavage of the F0 monomers in the trimer leads to a change in shape from cones to lollipops that aggregate into rosettes. This aggregation apparently occurs by interaction of the fusion peptides of molecules that are exposed after cleavage. Since exposure of the fusion peptide is a key event in the process of membrane fusion, changes associated with cleavage may reflect those occurring in full-length F during membrane fusion. Deletions or substitutions that changed either the length, charge or hydrophobicity of the fusion peptide inhibited aggregation of , and these mutants remained as unaggregated cones after cleavage. In contrast, more conservative changes did not inhibit the change of shape and aggregation of . When the same changes were introduced in the fusion peptide of full-length F, only the mutations that inhibited aggregation of prevented membrane fusion. Thus, the conformational changes that follow completion of cleavage of the protein require a functional fusion peptide. These sequence constraints may restrict accumulation of sequence changes in the fusion peptide of HRSV F when compared with other hydrophobic regions of the molecule.


2020 ◽  
Vol 95 (1) ◽  
Author(s):  
Dongdong Cao ◽  
Yunrong Gao ◽  
Claire Roesler ◽  
Samantha Rice ◽  
Paul D'Cunha ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is a nonsegmented negative-sense (NNS) RNA virus and shares a similar RNA synthesis strategy with other members of NNS RNA viruses, such as measles, rabies virus, and Ebola virus. RSV RNA synthesis is catalyzed by a multifunctional RNA-dependent RNA polymerase (RdRP), which is composed of a large (L) protein that catalyzes three distinct enzymatic functions and an essential coenzyme phosphoprotein (P). Here, we successfully prepared highly pure, full-length, wild-type and mutant RSV polymerase (L-P) complexes. We demonstrated that the RSV polymerase could carry out both de novo and primer-based RNA synthesis. We defined the minimal length of the RNA template for in vitro de novo RNA synthesis using the purified RSV polymerase as 8 nucleotides (nt), shorter than previously reported. We showed that the RSV polymerase catalyzed primer-dependent RNA elongation with different lengths of primers on both short (10-nt) and long (25-nt) RNA templates. We compared the sequence specificity of different viral promoters and identified positions 3, 5, and 8 of the promoter sequence as essential to the in vitro RSV polymerase activity, consistent with the results previously mapped with the in vivo minigenome assay. Overall, these findings agree well with those of previous biochemical studies and extend our understanding of the promoter sequence and the mechanism of RSV RNA synthesis. IMPORTANCE As a major human pathogen, RSV affects 3.4 million children worldwide annually. However, no effective antivirals or vaccines are available. An in-depth mechanistic understanding of the RSV RNA synthesis machinery remains a high priority among the NNS RNA viruses. There is a strong public health need for research on this virus, due to major fundamental gaps in our understanding of NNS RNA virus replication. As the key enzyme executing transcription and replication of the virus, the RSV RdRP is a logical target for novel antiviral drugs. Therefore, exploring the primer-dependent RNA elongation extends our mechanistic understanding of the RSV RNA synthesis. Further fine mapping of the promoter sequence paves the way to better understand the function and structure of the RSV polymerase.


2021 ◽  
Author(s):  
Ashley C. Beavis ◽  
Kim C. Tran ◽  
Enrico R. Barrozo ◽  
Shannon I. Phan ◽  
Michael N. Teng ◽  
...  

Respiratory syncytial virus (RSV) is a single-stranded, negative-sense, RNA virus in the family Pneumoviridae and genus Orthopneumoviridae that can cause severe disease in infants, immunocompromised adults, and the elderly. The RSV viral RNA-dependent RNA polymerase (vRdRp) complex is composed of the phosphoprotein (P) and the large polymerase protein (L). The P protein is constitutively phosphorylated by host kinases and has 41 serine (S) and threonine (T) residues as potential phosphorylation sites. To identify important phosphorylation residues in the P protein, we systematically and individually mutated all serine S and T residues to alanine (A) and first analyzed their effect on genome transcription and replication using a minigenome system. We found that the mutation of eight residues resulted in significantly reduced minigenome activity compared to wild-type P. We then incorporated these mutations (T210A, S203A, T151A, S156A, T160A, S23A, T188A, and T105A) into full-length genome cDNA to rescue recombinant RSV. We were able to recover four recombinant viruses (T151A, S156A, T160A, and S23A), suggesting RSV-P residues T210, S203, T188, and T105 are essential for viral RNA replication. Among the four rescued, rRSV-T160A caused a minor growth defect compared to its parental virus while rRSV-S156A had severely restricted replication due to decreased levels of genomic RNA. During infection, P-S156A phosphorylation was decreased, and when passaged, the S156A virus acquired a known compensatory mutation in L (L795I) that enhanced both WT-P and P-S156A minigenome activity and was able to partially rescue the S156A viral growth defect. This work demonstrates that residues T210, S203, T188, and T105 are critical for RSV replication, and S156 plays a critical role in viral RNA synthesis. Importance RSV-P is a heavily phosphorylated protein that is required for RSV replication. In this study, we identified several residues, including P-S156, as phosphorylation sites that play critical roles in efficient viral growth and genome replication. Future studies to identify the specific kinase(s) that phosphorylate these residues can lead to kinase inhibitors and anti-viral drugs for this important human pathogen.


Sign in / Sign up

Export Citation Format

Share Document