p protein
Recently Published Documents


TOTAL DOCUMENTS

670
(FIVE YEARS 37)

H-INDEX

57
(FIVE YEARS 1)

Author(s):  
Yoshiyuki Arinuma ◽  
Shunsei Hirohata ◽  
Takuya Isayama ◽  
Yasuhiro Hasegawa ◽  
Takumi Muramatsu ◽  
...  


2021 ◽  
Author(s):  
Xiao-Dong Fang ◽  
Qiang Gao ◽  
Ying Zang ◽  
Ji-Hui Qiao ◽  
Dong-Min Gao ◽  
...  

Liquid–liquid phase separation (LLPS) plays important roles in forming cellular membraneless organelles. However, how host factors regulate LLPS of viral proteins during negative-sense RNA (NSR) virus infections is largely unknown. Here, we used Barley yellow striate mosaic virus (BYSMV) as a model to demonstrate regulation of host casein kinase 1 in phase separation and infection of NSR viruses. We first found that the BYSMV phosphoprotein (P) formed spherical granules with liquid properties and recruited viral nucleotide (N) and polymerase (L) proteins in vivo. Moreover, the P-formed granules were tethered to the ER/actin network for trafficking and fusion. BYSMV P alone formed droplets and incorporated the N protein and genomic RNA in vitro. Interestingly, phase separation of BYSMV P was inhibited by host casein kinase 1 (CK1)-dependent phosphorylation of an intrinsically disordered P protein region. Genetic assays demonstrated that the unphosphorylated mutant of BYSMV P exhibited condensed phase, which promoted virus replication through concentrating the N, L proteins, and genome RNA into viroplasms. Whereas, the phosphorylation-mimic mutant existed in diffuse phase state leading to enhanced virus transcription. Collectively, our results demonstrate that host CK1 modulates phase separation of viral P protein and virus infection.



Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1577
Author(s):  
Matthias Niklasch ◽  
Peter Zimmermann ◽  
Michael Nassal

Hepatitis B virus (HBV) is a small enveloped DNA virus which replicates its tiny 3.2 kb genome by reverse transcription inside an icosahedral nucleocapsid, formed by a single ~180 amino acid capsid, or core, protein (Cp). HBV causes chronic hepatitis B (CHB), a severe liver disease responsible for nearly a million deaths each year. Most of HBV’s only seven primary gene products are multifunctional. Though less obvious than for the multi-domain polymerase, P protein, this is equally crucial for Cp with its multiple roles in the viral life-cycle. Cp provides a stable genome container during extracellular phases, allows for directed intracellular genome transport and timely release from the capsid, and subsequent assembly of new nucleocapsids around P protein and the pregenomic (pg) RNA, forming a distinct compartment for reverse transcription. These opposing features are enabled by dynamic post-transcriptional modifications of Cp which result in dynamic structural alterations. Their perturbation by capsid assembly modulators (CAMs) is a promising new antiviral concept. CAMs inappropriately accelerate assembly and/or distort the capsid shell. We summarize the functional, biochemical, and structural dynamics of Cp, and discuss the therapeutic potential of CAMs based on clinical data. Presently, CAMs appear as a valuable addition but not a substitute for existing therapies. However, as part of rational combination therapies CAMs may bring the ambitious goal of a cure for CHB closer to reality.



2021 ◽  
Author(s):  
Ashley C. Beavis ◽  
Kim C. Tran ◽  
Enrico R. Barrozo ◽  
Shannon I. Phan ◽  
Michael N. Teng ◽  
...  

Respiratory syncytial virus (RSV) is a single-stranded, negative-sense, RNA virus in the family Pneumoviridae and genus Orthopneumoviridae that can cause severe disease in infants, immunocompromised adults, and the elderly. The RSV viral RNA-dependent RNA polymerase (vRdRp) complex is composed of the phosphoprotein (P) and the large polymerase protein (L). The P protein is constitutively phosphorylated by host kinases and has 41 serine (S) and threonine (T) residues as potential phosphorylation sites. To identify important phosphorylation residues in the P protein, we systematically and individually mutated all serine S and T residues to alanine (A) and first analyzed their effect on genome transcription and replication using a minigenome system. We found that the mutation of eight residues resulted in significantly reduced minigenome activity compared to wild-type P. We then incorporated these mutations (T210A, S203A, T151A, S156A, T160A, S23A, T188A, and T105A) into full-length genome cDNA to rescue recombinant RSV. We were able to recover four recombinant viruses (T151A, S156A, T160A, and S23A), suggesting RSV-P residues T210, S203, T188, and T105 are essential for viral RNA replication. Among the four rescued, rRSV-T160A caused a minor growth defect compared to its parental virus while rRSV-S156A had severely restricted replication due to decreased levels of genomic RNA. During infection, P-S156A phosphorylation was decreased, and when passaged, the S156A virus acquired a known compensatory mutation in L (L795I) that enhanced both WT-P and P-S156A minigenome activity and was able to partially rescue the S156A viral growth defect. This work demonstrates that residues T210, S203, T188, and T105 are critical for RSV replication, and S156 plays a critical role in viral RNA synthesis. Importance RSV-P is a heavily phosphorylated protein that is required for RSV replication. In this study, we identified several residues, including P-S156, as phosphorylation sites that play critical roles in efficient viral growth and genome replication. Future studies to identify the specific kinase(s) that phosphorylate these residues can lead to kinase inhibitors and anti-viral drugs for this important human pathogen.



2021 ◽  
Vol 8 ◽  
Author(s):  
Danyun Zeng ◽  
Ainur Abzhanova ◽  
Benjamin P. Brown ◽  
Nicholas J. Reiter

Ribonuclease P (RNase P) is a universal RNA-protein endonuclease that catalyzes 5’ precursor-tRNA (ptRNA) processing. The RNase P RNA plays the catalytic role in ptRNA processing; however, the RNase P protein is required for catalysis in vivo and interacts with the 5’ leader sequence. A single P RNA and a P protein form the functional RNase P holoenzyme yet dimeric forms of bacterial RNase P can interact with non-tRNA substrates and influence bacterial cell growth. Oligomeric forms of the P protein can also occur in vitro and occlude the 5’ leader ptRNA binding interface, presenting a challenge in accurately defining the substrate recognition properties. To overcome this, concentration and temperature dependent NMR studies were performed on a thermostable RNase P protein from Thermatoga maritima. NMR relaxation (R1, R2), heteronuclear NOE, and diffusion ordered spectroscopy (DOSY) experiments were analyzed, identifying a monomeric species through the determination of the diffusion coefficients (D) and rotational correlation times (τc). Experimental diffusion coefficients and τc values for the predominant monomer (2.17 ± 0.36 * 10−10 m2/s, τc = 5.3 ns) or dimer (1.87 ± 0.40* 10−10 m2/s, τc = 9.7 ns) protein assemblies at 45°C correlate well with calculated diffusion coefficients derived from the crystallographic P protein structure (PDB 1NZ0). The identification of a monomeric P protein conformer from relaxation data and chemical shift information enabled us to gain novel insight into the structure of the P protein, highlighting a lack of structural convergence of the N-terminus (residues 1–14) in solution. We propose that the N-terminus of the bacterial P protein is partially disordered and adopts a stable conformation in the presence of RNA. In addition, we have determined the location of the 5’ leader RNA in solution and measured the affinity of the 5’ leader RNA–P protein interaction. We show that the monomer P protein interacts with RNA at the 5’ leader binding cleft that was previously identified using X-ray crystallography. Data support a model where N-terminal protein flexibility is stabilized by holoenzyme formation and helps to accommodate the 5’ leader region of ptRNA. Taken together, local structural changes of the P protein and the 5’ leader RNA provide a means to obtain optimal substrate alignment and activation of the RNase P holoenzyme.



Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1737
Author(s):  
Melissa N. Webby ◽  
Nicole Herr ◽  
Esther M. M. Bulloch ◽  
Michael Schmitz ◽  
Jeremy R. Keown ◽  
...  

The paramyxoviral phosphoprotein (P protein) is the non-catalytic subunit of the viral RNA polymerase, and coordinates many of the molecular interactions required for RNA synthesis. All paramyxoviral P proteins oligomerize via a centrally located coiled-coil that is connected to a downstream binding domain by a dynamic linker. The C-terminal region of the P protein coordinates interactions between the catalytic subunit of the polymerase, and the viral nucleocapsid housing the genomic RNA. The inherent flexibility of the linker is believed to facilitate polymerase translocation. Here we report biophysical and structural characterization of the C-terminal region of the P protein from Menangle virus (MenV), a bat-borne paramyxovirus with zoonotic potential. The MenV P protein is tetrameric but can dissociate into dimers at sub-micromolar protein concentrations. The linker is globally disordered and can be modeled effectively as a worm-like chain. However, NMR analysis suggests very weak local preferences for alpha-helical and extended beta conformation exist within the linker. At the interface between the disordered linker and the structured C-terminal binding domain, a gradual disorder-to-order transition occurs, with X-ray crystallographic analysis revealing a dynamic interfacial structure that wraps the surface of the binding domain.



2021 ◽  
Author(s):  
Wan-Chung Hu

Protein world hypothesis and the origin of homochiralty are described. By using enzyme catalyzing itself, L-amino acid can replicate. L-amino acid also catalyze D-sugar production. By using Ramachandran plot, L-amino acid is favored for generating right alpha helix and beta sheet. Thus, homochiralty of earth happened.



2021 ◽  
Vol 17 (7) ◽  
pp. e1009729
Author(s):  
Jingyu Zhan ◽  
Angela R. Harrison ◽  
Stephanie Portelli ◽  
Thanh Binh Nguyen ◽  
Isshu Kojima ◽  
...  

Rabies virus phosphoprotein (P protein) is a multifunctional protein that plays key roles in replication as the polymerase cofactor that binds to the complex of viral genomic RNA and the nucleoprotein (N protein), and in evading the innate immune response by binding to STAT transcription factors. These interactions are mediated by the C-terminal domain of P (PCTD). The colocation of these binding sites in the small globular PCTD raises the question of how these interactions underlying replication and immune evasion, central to viral infection, are coordinated and, potentially, coregulated. While direct data on the binding interface of the PCTD for STAT1 is available, the lack of direct structural data on the sites that bind N protein limits our understanding of this interaction hub. The PCTD was proposed to bind via two sites to a flexible loop of N protein (Npep) that is not visible in crystal structures, but no direct analysis of this interaction has been reported. Here we use Nuclear Magnetic Resonance, and molecular modelling to show N protein residues, Leu381, Asp383, Asp384 and phosphor-Ser389, are likely to bind to a ‘positive patch’ of the PCTD formed by Lys211, Lys214 and Arg260. Furthermore, in contrast to previous predictions we identify a single site of interaction on the PCTD by this Npep. Intriguingly, this site is proximal to the defined STAT1 binding site that includes Ile201 to Phe209. However, cell-based assays indicate that STAT1 and N protein do not compete for P protein. Thus, it appears that interactions critical to replication and immune evasion can occur simultaneously with the same molecules of P protein so that the binding of P protein to activated STAT1 can potentially occur without interrupting interactions involved in replication. These data suggest that replication complexes might be directly involved in STAT1 antagonism.



Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 857
Author(s):  
Zhaolei Xue ◽  
Qi Han ◽  
Pengwei Huang ◽  
Xi Jiang ◽  
Ming Tan ◽  
...  

Human noroviruses (huNoVs) cause epidemic acute gastroenteritis with significant mortality and morbidity worldwide. However, there are no commercial vaccines or antivirals against these important pathogens so far. In this study, we found that bovine colostrum (bCM) inhibited huNoV VLPs and their capsid-protruding (P) domains binding to histo-blood group antigens (HBGAs) that are huNoV receptor or attachment factors for infection, suggesting that bCM may function as a natural antiviral against huNoVs. We then characterized the bCM for the functional inhibition components by sequentially separating bCM into multiple fractions through various chromatography approaches, followed by determining their inhibitory abilities against huNoV receptor-binding P protein interacting with HBGAs. The protein components of bCM functional fractions were examined by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Our data suggested that some milk proteins, likely in the form of glycoproteins, contribute to the observed blocking effects of bCM. Our findings lay an important foundation to further develop bCM into a potential natural antiviral against huNoVs.



2021 ◽  
Vol 8 ◽  
Author(s):  
Niyokwishimira Alfred ◽  
Bang Qian ◽  
Xiaodong Qin ◽  
Xiangping Yin ◽  
Meera Prajapati ◽  
...  

Peste des petits ruminant virus (PPRV) causes a highly contagious disease in small ruminants. The molecular mechanism of PPRV replication and its interactions with hosts are poorly studied. In other paramyxoviruses, the viral phosphoprotein (P) has been associated with multiple functions for key biological processes such as the regulation of transcription, translation, and the control of cell cycle. Phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) is an important process for gene regulation in host cells under stress, including viral infection. In the present study, molecular mechanisms associated with PPRV replication and viral interaction with host cells were investigated. We describe the ability of PPRV to dephosphorylate eIF2α and the potential of PPRV P protein to induce the host cellular growth arrest DNA damage protein (GADD34), which is known to be associated with eIF2α dephosphorylation. Furthermore, we observed that PPRV P protein alone could block PERK/eIF2α phosphorylation. We speculate that PPRV exploits eIF2α dephosphorylation to facilitate viral replication and that PPRV P protein is involved in this molecular mechanism. This work provides new insights into further understanding PPRV pathobiology and its viral/host interactions.



Sign in / Sign up

Export Citation Format

Share Document