scholarly journals The same normal cell protein is phosphorylated after transformation by avian sarcoma viruses with unrelated transforming genes.

1981 ◽  
Vol 1 (1) ◽  
pp. 43-50 ◽  
Author(s):  
E Erikson ◽  
R Cook ◽  
G J Miller ◽  
R L Erikson

The phosphorylation of a normal cellular protein of molecular weight 34,000 (34K) is enhanced in Rous sarcoma virus-transformed chicken embryo fibroblasts apparently as a direct consequence of the phosphotransferase activity of the Rous sarcoma virus-transforming protein pp60src. We have prepared anti-34K serum by using 34K purified from normal fibroblasts to confirm that the transformation-specific phosphorylation described previously occurs on a normal cellular protein and to further characterize the nature of the protein. In this communication, we also show that the phosphorylation of 34K is also increased in cells transformed by either Fujinami or PRCII sarcoma virus, two recently characterized avian sarcoma viruses whose transforming proteins, although distinct from pp60src, are also associated with phosphotransferase activity. Moreover, comparative fingerprinting of tryptic phosphopeptides shows that the major site of phosphorylation of 34K is the same in all three cases.

1981 ◽  
Vol 1 (1) ◽  
pp. 43-50
Author(s):  
E Erikson ◽  
R Cook ◽  
G J Miller ◽  
R L Erikson

The phosphorylation of a normal cellular protein of molecular weight 34,000 (34K) is enhanced in Rous sarcoma virus-transformed chicken embryo fibroblasts apparently as a direct consequence of the phosphotransferase activity of the Rous sarcoma virus-transforming protein pp60src. We have prepared anti-34K serum by using 34K purified from normal fibroblasts to confirm that the transformation-specific phosphorylation described previously occurs on a normal cellular protein and to further characterize the nature of the protein. In this communication, we also show that the phosphorylation of 34K is also increased in cells transformed by either Fujinami or PRCII sarcoma virus, two recently characterized avian sarcoma viruses whose transforming proteins, although distinct from pp60src, are also associated with phosphotransferase activity. Moreover, comparative fingerprinting of tryptic phosphopeptides shows that the major site of phosphorylation of 34K is the same in all three cases.


1982 ◽  
Vol 2 (6) ◽  
pp. 653-665 ◽  
Author(s):  
Ricardo Martinez ◽  
Kenji D. Nakamura ◽  
Michael J. Weber

Phosphorylation on tyrosine residues mediated by pp60srcappears to be a primary biochemical event leading to the establishment of the transformed phenotype in Rous sarcoma virus (RSV)-infected cells. To identify the cellular proteins that undergo tyrosine phosphorylation during transformation, a32P-labeled RSV-transformed chicken embryo cell extract was analyzed by electrophoresis on a polyacrylamide gel. After slicing the gel into approximately 60 slices, phosphoamino acid analyses were carried out on the protein recovered from each gel slice. Phosphotyrosine was found in every gel slice, with two major peaks of this phosphoamino acid aroundMr's of 59 and 36 kilodaltons. When the same analysis was performed with cells infected with a transformation-defectivesrcdeletion mutant of RSV (tdNY101), significant and reproducible peaks of phosphotyrosine were found in only 2 of 60 gel slices. These gel slices corresponded toMr's of 42 and 40 kilodaltons. Identical results were obtained with normal uninfected chicken embryo fibroblasts. We conclude from these observations that pp60srcor the combined action of pp60srcand pp60src-activated cellular protein kinases cause the tyrosine-specific phosphorylation of a very large number of cellular polypeptides in RSV-transformed cells. In addition, untransformed cells appear to possess one or more active tyrosine-specific protein kinases which are responsible for the phosphorylation of a limited number of proteins. These proteins are different from the major phosphotyrosine-containing proteins of the transformed cells.


1985 ◽  
Vol 5 (5) ◽  
pp. 1058-1066 ◽  
Author(s):  
H Iba ◽  
F R Cross ◽  
E A Garber ◽  
H Hanafusa

We have previously found that Rous sarcoma virus variants in which the viral src (v-src) gene is replaced by the cellular src (c-src) gene have no transforming activity. In this study, we analyzed the basis for the inability of the p60c-src overproduced by these variants to transform cells. Phosphorylations of tyrosine residues in total cell protein or in cellular 34K protein are known to be markedly enhanced upon infection with wild-type Rous sarcoma virus. We found that these tyrosine phosphorylations were only slightly increased in the c-src-containing virus-infected cells, whereas both levels were significantly increased by infection with wild-type Rous sarcoma virus, or transforming mutant viruses which are derived from c-src-containing viruses by spontaneous mutation. Phosphorylation at tyrosine 416 of p60 itself was also extremely low in overproduced p60c-src and high in p60s of transforming mutant viruses. In immunoprecipitates with monoclonal antibody, the overproduced p60c-src had much lower casein tyrosine kinase activity than did p60v-src. We previously showed that p60 myristylation and plasma membrane localization may be required for cell transformation. p60c-src was similar to transforming p60s in these properties. These results strongly suggest that the low level of tyrosine phosphorylation by overproduced p60c-src accounts for its inability to transform cells.


1977 ◽  
Vol 146 (6) ◽  
pp. 1735-1747 ◽  
Author(s):  
H Hanafusa ◽  
C C Halpern ◽  
D L Buchhagen ◽  
S Kawai

Transformation-defective (td) mutants of the Schmidt-Ruppin strain of Rous sarcoma virus (RSV), which contains deletions in the gene responsible for transformation (src gene), are unable to transform chicken embryo fibroblasts in vitro. Injection of some of these td mutants into newborn chickens resulted in the formation of sarcomas from which sarcoma virus was unfailingly recovered. The possibility that transforming RSV was present in the td virus preparations was excluded by further purification of the td viruses. Morphology of the foci induced by the newly recovered sarcoma virus was distinct from that of foci induced by the parental Schmidt Ruppin strain of RSV. It is suggested that the new sarcoma virus was generated as a result of the genetic interaction between the genomes of td virus and chicken cells.


1985 ◽  
Vol 5 (5) ◽  
pp. 1058-1066
Author(s):  
H Iba ◽  
F R Cross ◽  
E A Garber ◽  
H Hanafusa

We have previously found that Rous sarcoma virus variants in which the viral src (v-src) gene is replaced by the cellular src (c-src) gene have no transforming activity. In this study, we analyzed the basis for the inability of the p60c-src overproduced by these variants to transform cells. Phosphorylations of tyrosine residues in total cell protein or in cellular 34K protein are known to be markedly enhanced upon infection with wild-type Rous sarcoma virus. We found that these tyrosine phosphorylations were only slightly increased in the c-src-containing virus-infected cells, whereas both levels were significantly increased by infection with wild-type Rous sarcoma virus, or transforming mutant viruses which are derived from c-src-containing viruses by spontaneous mutation. Phosphorylation at tyrosine 416 of p60 itself was also extremely low in overproduced p60c-src and high in p60s of transforming mutant viruses. In immunoprecipitates with monoclonal antibody, the overproduced p60c-src had much lower casein tyrosine kinase activity than did p60v-src. We previously showed that p60 myristylation and plasma membrane localization may be required for cell transformation. p60c-src was similar to transforming p60s in these properties. These results strongly suggest that the low level of tyrosine phosphorylation by overproduced p60c-src accounts for its inability to transform cells.


1982 ◽  
Vol 2 (7) ◽  
pp. 875-880 ◽  
Author(s):  
L A Lipsich ◽  
J R Cutt ◽  
J S Brugge

Two forms of the transforming proteins of Fujinami (pp140fps) and Yamaguchi 73 (pp94yes) sarcoma viruses were detected in lysates of chicken cells transformed by these viruses; the majority of pp140fps and pp94yes molecules were present as monomers; however, a small percentage of these proteins was associated in a complex with two cellular proteins of Mr 90,000 and 50,000. These cellular proteins were shown to be identical to those previously found to be complexed with the transforming protein of Rous sarcoma virus, pp60src. These results suggest a common role for the interaction of pp90 and pp50 with viral transforming proteins encoding tyrosyl-protein kinases.


1982 ◽  
Vol 2 (7) ◽  
pp. 875-880
Author(s):  
L A Lipsich ◽  
J R Cutt ◽  
J S Brugge

Two forms of the transforming proteins of Fujinami (pp140fps) and Yamaguchi 73 (pp94yes) sarcoma viruses were detected in lysates of chicken cells transformed by these viruses; the majority of pp140fps and pp94yes molecules were present as monomers; however, a small percentage of these proteins was associated in a complex with two cellular proteins of Mr 90,000 and 50,000. These cellular proteins were shown to be identical to those previously found to be complexed with the transforming protein of Rous sarcoma virus, pp60src. These results suggest a common role for the interaction of pp90 and pp50 with viral transforming proteins encoding tyrosyl-protein kinases.


1982 ◽  
Vol 2 (6) ◽  
pp. 653-665
Author(s):  
Ricardo Martinez ◽  
Kenji D. Nakamura ◽  
Michael J. Weber

Phosphorylation on tyrosine residues mediated by pp60 src appears to be a primary biochemical event leading to the establishment of the transformed phenotype in Rous sarcoma virus (RSV)-infected cells. To identify the cellular proteins that undergo tyrosine phosphorylation during transformation, a 32 P-labeled RSV-transformed chicken embryo cell extract was analyzed by electrophoresis on a polyacrylamide gel. After slicing the gel into approximately 60 slices, phosphoamino acid analyses were carried out on the protein recovered from each gel slice. Phosphotyrosine was found in every gel slice, with two major peaks of this phosphoamino acid around M r 's of 59 and 36 kilodaltons. When the same analysis was performed with cells infected with a transformation-defective src deletion mutant of RSV ( td NY101), significant and reproducible peaks of phosphotyrosine were found in only 2 of 60 gel slices. These gel slices corresponded to M r 's of 42 and 40 kilodaltons. Identical results were obtained with normal uninfected chicken embryo fibroblasts. We conclude from these observations that pp60 src or the combined action of pp60 src and pp60 src -activated cellular protein kinases cause the tyrosine-specific phosphorylation of a very large number of cellular polypeptides in RSV-transformed cells. In addition, untransformed cells appear to possess one or more active tyrosine-specific protein kinases which are responsible for the phosphorylation of a limited number of proteins. These proteins are different from the major phosphotyrosine-containing proteins of the transformed cells.


1985 ◽  
Vol 100 (3) ◽  
pp. 692-703 ◽  
Author(s):  
J J Lin ◽  
D M Helfman ◽  
S H Hughes ◽  
C S Chou

Seven polypeptides (a, b, c, 1, 2, 3a, and 3b) have been previously identified as tropomyosin isoforms in chicken embryo fibroblasts (CEF) (Lin, J. J.-C., Matsumura, F., and Yamashiro-Matsumura, S., 1984, J. Cell. Biol., 98:116-127). Spots a and c had identical mobility on two-dimensional gels with the slow-migrating and fast-migrating components, respectively, of chicken gizzard tropomyosin. However, the remaining isoforms of CEF tropomyosin were distinct from chicken skeletal and cardiac tropomyosins on two-dimensional gels. The mixture of CEF tropomyosin has been isolated by the combination of Triton/glycerol extraction of monolayer cells, heat treatment, and ammonium sulfate fractionation. The yield of tropomyosin was estimated to be 1.4% of total CEF proteins. The identical set of tropomyosin isoforms could be found in the antitropomyosin immunoprecipitates after the cell-free translation products of total poly(A)+ RNAs isolated from CEF cells. This suggested that at least seven mRNAs coding for these tropomyosin isoforms existed in the cell. Purified tropomyosins (particularly 1, 2, and 3) showed different actin-binding abilities in the presence of 100 mM KCl and no divalent cation. Under this condition, the binding of tropomyosin 3 (3a + 3b) to actin filaments was significantly weaker than that of tropomyosin 1 or 2. CEF tropomyosin 1, and probably 3, could be cross-linked to form homodimers by treatment with 5,5'-dithiobis-(2-nitrobenzoate), whereas tropomyosin a and c formed a heterodimer. These dimer species may reflect the in vivo assembly of tropomyosin isoforms, since dimer formation occurred not only with purified tropomyosin but also with microfilament-associated tropomyosin. The expression of these tropomyosin isoforms in Rous sarcoma virus-transformed CEF cells has also been investigated. In agreement with the previous report by Hendricks and Weintraub (Proc. Natl. Acad. Sci. USA., 78:5633-5637), we found that major tropomyosin 1 was greatly reduced in transformed cells. We have also found that the relative amounts of tropomyosin 3a and 3b were increased in both the total cell lysate and the microfilament fraction of transformed cells. Because of the different actin-binding properties observed for CEF tropomyosins, changes in the expression of these isoforms may, in part, be responsible for the reduction of actin cables and the alteration of cell shape found in transformed cells.


Sign in / Sign up

Export Citation Format

Share Document