scholarly journals Binding properties of replication protein A from human and yeast cells.

1992 ◽  
Vol 12 (7) ◽  
pp. 3050-3059 ◽  
Author(s):  
C Kim ◽  
R O Snyder ◽  
M S Wold

Replication protein A (RP-A; also known as replication factor A and human SSB), is a single-stranded DNA-binding protein that is required for simian virus 40 DNA replication in vitro. RP-A isolated from both human and yeast cells is a very stable complex composed of 3 subunits (70, 32, and 14 kDa). We have analyzed the DNA-binding properties of both human and yeast RP-A in order to gain a better understanding of their role(s) in DNA replication. Human RP-A has high affinity for single-stranded DNA and low affinity for RNA and double-stranded DNA. The apparent affinity constant of RP-A for single-stranded DNA is in the range of 10(9) M-1. RP-A has a binding site size of approximately 30 nucleotides and does not bind cooperatively. The binding of RP-A to single-stranded DNA is partially sequence dependent. The affinity of human RP-A for pyrimidines is approximately 50-fold higher than its affinity for purines. The binding properties of yeast RP-A are similar to those of the human protein. Both yeast and human RP-A bind preferentially to the pyrimidine-rich strand of a homologous origin of replication: the ARS307 or the simian virus 40 origin of replication, respectively. This asymmetric binding suggests that RP-A could play a direct role in the process of initiation of DNA replication.

1992 ◽  
Vol 12 (7) ◽  
pp. 3050-3059 ◽  
Author(s):  
C Kim ◽  
R O Snyder ◽  
M S Wold

Replication protein A (RP-A; also known as replication factor A and human SSB), is a single-stranded DNA-binding protein that is required for simian virus 40 DNA replication in vitro. RP-A isolated from both human and yeast cells is a very stable complex composed of 3 subunits (70, 32, and 14 kDa). We have analyzed the DNA-binding properties of both human and yeast RP-A in order to gain a better understanding of their role(s) in DNA replication. Human RP-A has high affinity for single-stranded DNA and low affinity for RNA and double-stranded DNA. The apparent affinity constant of RP-A for single-stranded DNA is in the range of 10(9) M-1. RP-A has a binding site size of approximately 30 nucleotides and does not bind cooperatively. The binding of RP-A to single-stranded DNA is partially sequence dependent. The affinity of human RP-A for pyrimidines is approximately 50-fold higher than its affinity for purines. The binding properties of yeast RP-A are similar to those of the human protein. Both yeast and human RP-A bind preferentially to the pyrimidine-rich strand of a homologous origin of replication: the ARS307 or the simian virus 40 origin of replication, respectively. This asymmetric binding suggests that RP-A could play a direct role in the process of initiation of DNA replication.


1997 ◽  
Vol 17 (7) ◽  
pp. 3876-3883 ◽  
Author(s):  
C Iftode ◽  
J A Borowiec

The initiation of simian virus 40 (SV40) replication requires recognition of the viral origin of replication (ori) by SV40 T antigen, followed by denaturation of ori in a reaction dependent upon human replication protein A (hRPA). To understand how origin denaturation is achieved, we constructed a 48-bp SV40 "pseudo-origin" with a central 8-nucleotide (nt) bubble flanked by viral sequences, mimicking a DNA structure found within the SV40 T antigen-ori complex. hRPA bound the pseudo-origin with similar stoichiometry and an approximately fivefold reduced affinity compared to the binding of a 48-nt single-stranded DNA molecule. The presence of hRPA not only distorted the duplex DNA flanking the bubble but also resulted in denaturation of the pseudo-origin substrate in an ATP-independent reaction. Pseudo-origin denaturation occurred in 7 mM MgCl2, distinguishing this reaction from Mg2+-independent DNA-unwinding activities previously reported for hRPA. Tests of other single-stranded DNA-binding proteins (SSBs) revealed that pseudo-origin binding correlates with the known ability of these SSBs to support the T-antigen-dependent origin unwinding activity. Our results suggest that hRPA binding to the T antigen-ori complex induces the denaturation of ori including T-antigen recognition sequences, thus releasing T antigen from ori to unwind the viral DNA. The denaturation activity of hRPA has the potential to play a significant role in other aspects of DNA metabolism, including DNA repair.


2007 ◽  
Vol 81 (9) ◽  
pp. 4510-4519 ◽  
Author(s):  
Weiping Wang ◽  
David Manna ◽  
Daniel T. Simmons

ABSTRACT The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.


2001 ◽  
Vol 75 (6) ◽  
pp. 2839-2847 ◽  
Author(s):  
Chunxiao Wu ◽  
Rupa Roy ◽  
Daniel T. Simmons

ABSTRACT We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication.


1994 ◽  
Vol 14 (8) ◽  
pp. 5114-5122
Author(s):  
R T Kamakaka ◽  
P D Kaufman ◽  
B Stillman ◽  
P G Mitsis ◽  
J T Kadonaga

DNA replication of double-stranded simian virus 40 (SV40) origin-containing plasmids, which has been previously thought to be a species-specific process that occurs only with factors derived from primate cells, is catalyzed with an extract derived from embryos of the fruit fly Drosophila melanogaster. This reaction is dependent upon both large T antigen, the SV40-encoded replication initiator protein and DNA helicase, and a functional T-antigen binding site at the origin of DNA replication. The efficiency of replication with extracts derived from Drosophila embryos is approximately 10% of that observed with extracts prepared from human 293 cells. This activity is not a unique property of embryonic extracts, as cytoplasmic extracts from Drosophila tissue culture cells also support T-antigen-mediated replication of SV40 DNA. By using highly purified proteins, DNA synthesis is initiated by Drosophila polymerase alpha-primase in a T-antigen-dependent manner in the presence of Drosophila replication protein A (RP-A; also known as single-stranded DNA-binding protein), but neither human RP-A nor Escherichia coli single-stranded DNA-binding protein could substitute for Drosophila RP-A. In reciprocal experiments, however, Drosophila RP-A was able to substitute for human RP-A in reactions carried out with human polymerase alpha-primase. These results collectively indicate that many of the specific functional interactions among T antigen, polymerase alpha-primase, and RP-A are conserved from primates to Drosophila species. Moreover, the observation that SV40 DNA replication can be performed with Drosophila factors provides a useful assay for the study of bidirectional DNA replication in Drosophila species in the context of a complete replication reaction.


2005 ◽  
Vol 25 (13) ◽  
pp. 5445-5455 ◽  
Author(s):  
Göran O. Bylund ◽  
Peter M. J. Burgers

ABSTRACT The replication clamp PCNA is loaded around DNA by replication factor C (RFC) and functions in DNA replication and repair. Regulated unloading of PCNA during the progression and termination of DNA replication may require additional factors. Here we show that a Saccharomyces cerevisiae complex required for the establishment of sister chromatid cohesion functions as an efficient unloader of PCNA. Unloading requires ATP hydrolysis. This seven-subunit Ctf18-RFC complex consists of the four small subunits of RFC, together with Ctf18, Dcc1, and Ctf8. Ctf18-RFC was also a weak loader of PCNA onto naked template-primer DNA. However, when the single-stranded DNA template was coated by the yeast single-stranded DNA binding protein replication protein A (RPA) but not by a mutant form of RPA or a heterologous single-stranded DNA binding protein, both binding of Ctf18-RFC to substrate DNA and loading of PCNA were strongly inhibited, and unloading predominated. Neither yeast RFC itself nor two other related clamp loaders, containing either Rad24 or Elg1, catalyzed significant unloading of PCNA. The Dcc1 and Ctf8 subunits of Ctf18-RFC, while required for establishing sister chromatid cohesion in vivo, did not function specifically in PCNA unloading in vitro, thereby separating the functionality of the Ctf18-RFC complex into two distinct paths.


1994 ◽  
Vol 14 (8) ◽  
pp. 5114-5122 ◽  
Author(s):  
R T Kamakaka ◽  
P D Kaufman ◽  
B Stillman ◽  
P G Mitsis ◽  
J T Kadonaga

DNA replication of double-stranded simian virus 40 (SV40) origin-containing plasmids, which has been previously thought to be a species-specific process that occurs only with factors derived from primate cells, is catalyzed with an extract derived from embryos of the fruit fly Drosophila melanogaster. This reaction is dependent upon both large T antigen, the SV40-encoded replication initiator protein and DNA helicase, and a functional T-antigen binding site at the origin of DNA replication. The efficiency of replication with extracts derived from Drosophila embryos is approximately 10% of that observed with extracts prepared from human 293 cells. This activity is not a unique property of embryonic extracts, as cytoplasmic extracts from Drosophila tissue culture cells also support T-antigen-mediated replication of SV40 DNA. By using highly purified proteins, DNA synthesis is initiated by Drosophila polymerase alpha-primase in a T-antigen-dependent manner in the presence of Drosophila replication protein A (RP-A; also known as single-stranded DNA-binding protein), but neither human RP-A nor Escherichia coli single-stranded DNA-binding protein could substitute for Drosophila RP-A. In reciprocal experiments, however, Drosophila RP-A was able to substitute for human RP-A in reactions carried out with human polymerase alpha-primase. These results collectively indicate that many of the specific functional interactions among T antigen, polymerase alpha-primase, and RP-A are conserved from primates to Drosophila species. Moreover, the observation that SV40 DNA replication can be performed with Drosophila factors provides a useful assay for the study of bidirectional DNA replication in Drosophila species in the context of a complete replication reaction.


Sign in / Sign up

Export Citation Format

Share Document