dna binding activity
Recently Published Documents


TOTAL DOCUMENTS

1772
(FIVE YEARS 147)

H-INDEX

111
(FIVE YEARS 8)

2021 ◽  
Vol 22 (24) ◽  
pp. 13525
Author(s):  
Wujiu Jiang ◽  
Yuxing Tan ◽  
Yiyuan Peng

Under microwave irradiation, eighteen new aroylhydrazone diorganotin complexes (1a–9b) were produced through the reaction of aroylhydrazine, 2-ketobutyric acid, and the corresponding diorganotin. Fourier transform infrared spectroscopy, 1H, 13C, and 119Sn nuclear magnetic resonance spectroscopies, high-resolution mass spectroscopy, X-ray crystallography, and thermogravimetric analysis (TGA) were performed to characterize the complexes. The in vitro anticancer activity for complexes were assessed using a CCK-8 assay on human cancer cells of HepG2, NCI-H460, and MCF-7. Complex 4b revealed more intensive anticancer activity against MCF-7 cells than the other complexes and cisplatin. Flow cytometry analysis and transmission electron microscope observation demonstrated that complex 4b mediated cell apoptosis of MCF-7 cells and arrested cell cycle in S phase. Western blotting analysis showed that 4b induced DNA damage in MCF-7 cells and led to apoptosis by the ATM-CHK2-p53 pathway. The single cell gel electrophoreses assay results showed that 4b induced DNA damage. The DNA binding activity of 4b was studied by UV–Visible absorption spectrometry, fluorescence competitive, viscosity measurements, gel electrophoresis, and molecular docking, and the results show that 4b can be well embedded in the groove and cleave DNA.


2021 ◽  
Author(s):  
Carolyn J. Huang ◽  
Benjamin A. Adler ◽  
Jennifer A. Doudna

SUMMARYUsed widely for genome editing in human cells, plants and animals, CRISPR-Cas enzymes including Cas9 and Cas12 provide RNA-guided immunity to microbes by targeting foreign DNA sequences for cleavage. We show here that the native activity of CRISPR-Cas12c protects bacteria from phage infection by binding to DNA targets without cleaving them, revealing that antiviral interference can be accomplished without chemical attack on the invader or general metabolic disruption in the host. Biochemical experiments demonstrate that Cas12c is a site-specific ribonuclease capable of generating mature CRISPR RNAs (crRNAs) from precursor transcripts. Furthermore, we find that crRNA maturation is essential for Cas12c-mediated DNA targeting. Surprisingly, however, these crRNAs direct double-stranded DNA binding by Cas12c using a mechanism that precludes DNA cutting. Cas12c’s RNA-guided DNA binding activity enables robust transcriptional repression of fluorescent reporter proteins in cells. Furthermore, this naturally DNase-free Cas12c enzyme can protect bacteria from lytic bacteriophage infection when targeting an essential phage gene. Together these results show that Cas12c employs targeted DNA binding to provide anti-viral immunity in bacteria, providing a native DNase-free pathway for transient antiviral immunity.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1342
Author(s):  
Michael Tellier

SETMAR is a protein lysine methyltransferase that is involved in several DNA processes, including DNA repair via the non-homologous end joining (NHEJ) pathway, regulation of gene expression, illegitimate DNA integration, and DNA decatenation. However, SETMAR is an atypical protein lysine methyltransferase since in anthropoid primates, the SET domain is fused to an inactive DNA transposase. The presence of the DNA transposase domain confers to SETMAR a DNA binding activity towards the remnants of its transposable element, which has resulted in the emergence of a gene regulatory function. Both the SET and the DNA transposase domains are involved in the different cellular roles of SETMAR, indicating the presence of novel and specific functions in anthropoid primates. In addition, SETMAR is dysregulated in different types of cancer, indicating a potential pathological role. While some light has been shed on SETMAR functions, more research and new tools are needed to better understand the cellular activities of SETMAR and to investigate the therapeutic potential of SETMAR.


2021 ◽  
pp. 1-9
Author(s):  
Gang Chen ◽  
Tingwang Guo ◽  
Lin Yang

Interleukin-1β, a key cytokine in gouty inflammation, is precisely regulated by the NLRP3 inflammasome and NF-κB. Our previous study demonstrated that paeonol suppressed IL-1β production in rats with monosodium urate (MSU)-induced arthritis. Whether NLRP3 inflammasome or NF-κB is responsible for the anti-inflammatory effect of paeonol remains unclear. In this study, J774A.1 cells induced by lipopolysaccharide (LPS) plus MSU, was used to investigate the effect of paeonol on NLRP3 inflammasome activation, and J774A.1 cells induced by LPS alone were used to investigate the effect of paeonol on NF-κB activation. In J774A.1 cells induced by LPS plus MSU, paeonol decreased the levels of IL-1β and caspase-1 and reduced the MSU-induced interaction of pro-caspase-1 and apoptosis-associated speck-like protein containing caspase recruitment domain (ASC), but did not affect the levels of pro-IL-1β and pro-caspase-1. In J774A.1 cells induced by LPS alone, paeonol reduced the levels of IL-1β, NLRP3, p-IKK, p-IκBα, and p-p65, but did not affect ASC levels. Paeonol also promoted the content of IκBα and retained more p65 in the cytoplasm. Furthermore, paeonol reduced the DNA-binding activity of p65 and lowered the levels of p-JNK, p-ERK, and p-p38. These results suggest that paeonol inhibits IL-1β production by inhibiting the activation of NLRP3 inflammasome, NF-κB, and MAPK signaling pathways.


Author(s):  
Michael Tellier

SETMAR is a protein lysine methyltransferase that is involved in several DNA processes, including DNA repair via the non-homologous end joining (NHEJ) pathway, regulation of gene expression, illegitimate DNA integration, and DNA decatenation. However, SETMAR is an atypical protein lysine methyltransferase since in anthropoid primates, the SET domain is fused to an inactive DNA transposase. The presence of the DNA transposase domain confers to SETMAR a DNA binding activity towards the remnants of its transposable element, which has resulted in the emergence of a gene regulatory function. Both the SET and the DNA transposase domains are involved in the different cellular roles of SETMAR, indicating the presence of novel and specific functions in anthropoid primates. In addition, SETMAR is dysregulated in different types of cancer, indicating a potential pathological role. While some light has been shed on SETMAR functions, more research and new tools are needed to better understand the cellular activities of SETMAR and to investigate the therapeutic potential of SETMAR.


Author(s):  
Yoshitaka Sunami ◽  
Takashi Yokoyama ◽  
Seiko Yoshino ◽  
Tomoko Takahara ◽  
Yukari Yamazaki ◽  
...  

The transcriptional repressor, BCL11A, is involved in hematological malignancies, B-cell development, and fetal-to-adult hemoglobin switching. However, the molecular mechanism by which it promotes the development of myeloid leukemia remains largely unknown. We find that Bcl11a cooperates with the pseudokinase, Trib1, in the development of acute myeloid leukemia (AML). Bcl11a promotes the proliferation and engraftment of Trib1-expressing AML cells both in vitro and in vivo. ChIP-seq analysis showed that upon DNA-binding, Bcl11a is significantly associated with PU.1, an inducer of myeloid differentiation, and that Bcl11a represses several PU.1 target genes, such as Asb2, Clec5a, and Fcgr3. Asb2, as a Bcl11a target gene that modulates cytoskeleton and cell-cell interaction, plays a key role in Bcl11a-induced malignant progression. The repression of PU.1 target genes by Bcl11a is achieved by both sequence-specific DNA-binding activity and recruitment of corepressors by Bcl11a. Suppression of the corepressor components, HDAC and LSD1, reverses the repressive activity. Moreover, treatment of AML cells with the HDAC inhibitor, pracinostat, and LSD1 inhibitor, GSK2879552, resulted in growth inhibition both in vitro and in vivo. High BCL11A expression is associated with worse prognosis in human AML patients. Blocking of BCL11A expression upregulates the expression of PU.1 target genes, and inhibits the growth of HL-60 cells and their engraftment to the bone marrow, suggesting that BCL11A is involved in human myeloid malignancies via the suppression of PU.1 transcriptional activity.


Sign in / Sign up

Export Citation Format

Share Document