scholarly journals Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH).

1994 ◽  
Vol 14 (6) ◽  
pp. 3569-3576 ◽  
Author(s):  
A J Bardwell ◽  
L Bardwell ◽  
N Iyer ◽  
J Q Svejstrup ◽  
W J Feaver ◽  
...  

The Rad2, Rad3, Rad4, and Ss12 proteins are required for nucleotide excision repair in yeast cells and are homologs of four human proteins which are involved in a group of hereditary repair-defective diseases. We have previously shown that Rad3 protein is one of the five subunits of purified RNA polymerase II basal transcription initiation factor b (TFIIH) and that Ss12 protein physically associates with factor b (W.J. Feaver, J.Q. Svejstrup, L. Bardwell, A.J. Bardwell, S. Buratowski, K.D. Gulyas, T.F. Donahue, E.C. Friedberg, and R.D. Kornberg, Cell 75:1379-1387, 1993). Here we show that the Rad2 and Rad4 proteins interact with purified factor b in vitro. Rad2 (a single-stranded DNA endonuclease) specifically interacts with the Tfb1 subunit of factor b, and we have mapped a limited region of the Rad2 polypeptide which is sufficient for this interaction. Rad2 also interacts directly with Ss12 protein (a putative DNA helicase). The binding of Rad2 and Rad4 proteins to factor b may define intermediates in the assembly of the nucleotide excision repair repairosome. Furthermore, the loading of factor b (or such intermediates) onto promoters during transcription initiation provides a mechanism for the preferential targeting of repair proteins to actively transcribing genes.

1994 ◽  
Vol 14 (6) ◽  
pp. 3569-3576
Author(s):  
A J Bardwell ◽  
L Bardwell ◽  
N Iyer ◽  
J Q Svejstrup ◽  
W J Feaver ◽  
...  

The Rad2, Rad3, Rad4, and Ss12 proteins are required for nucleotide excision repair in yeast cells and are homologs of four human proteins which are involved in a group of hereditary repair-defective diseases. We have previously shown that Rad3 protein is one of the five subunits of purified RNA polymerase II basal transcription initiation factor b (TFIIH) and that Ss12 protein physically associates with factor b (W.J. Feaver, J.Q. Svejstrup, L. Bardwell, A.J. Bardwell, S. Buratowski, K.D. Gulyas, T.F. Donahue, E.C. Friedberg, and R.D. Kornberg, Cell 75:1379-1387, 1993). Here we show that the Rad2 and Rad4 proteins interact with purified factor b in vitro. Rad2 (a single-stranded DNA endonuclease) specifically interacts with the Tfb1 subunit of factor b, and we have mapped a limited region of the Rad2 polypeptide which is sufficient for this interaction. Rad2 also interacts directly with Ss12 protein (a putative DNA helicase). The binding of Rad2 and Rad4 proteins to factor b may define intermediates in the assembly of the nucleotide excision repair repairosome. Furthermore, the loading of factor b (or such intermediates) onto promoters during transcription initiation provides a mechanism for the preferential targeting of repair proteins to actively transcribing genes.


Nucleotide excision repair (ner) in eukaryotes is a biochemically complex process involving multiple gene products. The budding yeast Saccharomyces cerevisiae is an informative model for this process. Multiple genes and in some cases gene products that are indispensable for ner have been isolated from this organism. Homologues of many of these yeast genes are structurally and functionally conserved in higher organisms, including humans. The yeast Rad1/Rad10 heterodimeric protein complex is an endonuclease that is believed to participate in damage-specific incision of DNA during ner . This endonuclease is also required for specialized types of recombination. The products of the RAD3, SSL2(RAD25) SSL1 and TFB1 genes have dual roles in ner and in RNA polymerase II-dependent basal transcription.


1995 ◽  
Vol 15 (4) ◽  
pp. 2288-2293 ◽  
Author(s):  
Z Wang ◽  
S Buratowski ◽  
J Q Svejstrup ◽  
W J Feaver ◽  
X Wu ◽  
...  

The essential TFB1 and SSL1 genes of the yeast Saccharomyces cerevisiae encode two subunits of the RNA polymerase II transcription factor TFIIH (factor b). Here we show that extracts of temperature-sensitive mutants carrying mutations in both genes (tfb1-101 and ssl1-1) are defective in nucleotide excision repair (NER) and RNA polymerase II transcription but are proficient for base excision repair. RNA polymerase II-dependent transcription at the CYC1 promoter was normal at permissive temperatures but defective in extracts preincubated at a restrictive temperature. In contrast, defective NER was observed at temperatures that are permissive for growth. Additionally, both mutants manifested increased sensitivity to UV radiation at permissive temperatures. The extent of this sensitivity was not increased in a tfb1-101 strain and was only slightly increased in a ssl1-1 strain at temperatures that are semipermissive for growth. Purified factor TFIIH complemented defective NER in both tfb1-101 and ssl1-1 mutant extracts. These results define TFB1 and SSL1 as bona fide NER genes and indicate that, as is the case with the yeast Rad3 and Ss12 (Rad25) proteins, Tfb1 and Ssl1 are required for both RNA polymerase II basal transcription and NER. Our results also suggest that the repair and transcription functions of Tfb1 and Ssl1 are separable.


2021 ◽  
Vol 22 (12) ◽  
pp. 6589
Author(s):  
Claudia Scalera ◽  
Giulio Ticli ◽  
Ilaria Dutto ◽  
Ornella Cazzalini ◽  
Lucia A. Stivala ◽  
...  

Endonuclease XPG participates in nucleotide excision repair (NER), in basal transcription, and in the processing of RNA/DNA hybrids (R-loops): the malfunction of these processes may cause genome instability. Here, we investigate the chromatin association of XPG during basal transcription and after transcriptional stress. The inhibition of RNA polymerase II with 5,6-dichloro-l-β-D-ribofuranosyl benzimidazole (DRB), or actinomycin D (AD), and of topoisomerase I with camptothecin (CPT) resulted in an increase in chromatin-bound XPG, with concomitant relocation by forming nuclear clusters. The cotranscriptional activators p300 and CREB-binding protein (CREBBP), endowed with lysine acetyl transferase (KAT) activity, interact with and acetylate XPG. Depletion of both KATs by RNA interference, or chemical inhibition with C646, significantly reduced XPG acetylation. However, the loss of KAT activity also resulted in increased chromatin association and the relocation of XPG, indicating that these processes were induced by transcriptional stress and not by reduced acetylation. Transcription inhibitors, including C646, triggered the R-loop formation and phosphorylation of histone H2AX (γ-H2AX). Proximity ligation assay (PLA) showed that XPG colocalized with R-loops, indicating the recruitment of the protein to these structures. These results suggest that transcriptional stress-induced XPG relocation may represent recruitment to sites of R-loop processing.


Sign in / Sign up

Export Citation Format

Share Document