scholarly journals Repression of activator-mediated transcription by herpes simplex virus ICP4 via a mechanism involving interactions with the basal transcription factors TATA-binding protein and TFIIB.

1995 ◽  
Vol 15 (7) ◽  
pp. 3618-3626 ◽  
Author(s):  
B Gu ◽  
R Kuddus ◽  
N A DeLuca

Infected-cell polypeptide 4 (ICP4) of herpes simplex virus is both a transcriptional activator and a repressor. It has been previously demonstrated that both SP1-activated transcription and USF-activated transcription are repressed by ICP4 without affecting basal transcription (B. Gu, R. Rivera-Gonzalez, C. A. Smith, and N. A. DeLuca, Proc. Natl. Acad. Sci. USA 90:9528-9532, 1993; R. Rivera-Gonzalez, A. N. Imbalzano, B. Gu, and N.A. DeLuca, Virology 202:550-564, 1994). In this study, it was found that ICP4 repressed the activation function of two other activators, VP16 and ICP4 itself, in vitro. ICP4 inhibited transcription by interfering with the formation of transcription initiation complexes without affecting transcription elongation. Repression of activator function required that an ICP4 DNA binding site was present in one orientation within approximately 45 bp 3' to the TATA box. DNA binding by ICP4 was necessary but not sufficient for repression. ICP4 has been shown to form tripartite complexes cooperatively with the TATA box-binding protein and TFIIB on DNA containing an ICP4 binding site and a TATA box (C. A. Smith, P. Bates, R. Rivera-Gonzalez, B. Gu, and N. DeLuca, J. Virol. 67:4676-4687, 1993). A region of ICP4 that enables the molecule to form tripartite complexes was also required in addition to the DNA binding domain for efficient repression. Moreover, repression was observed only when the ICP4 binding site was in a position that resulted in the formation of tripartite complexes. Together, the data suggest that ICP4 represses transcription by binding to DNA in a precise way so that it may interact with the basal transcription complex and inhibit some general step involved in the function of activators. The steps or interactions involved in transcriptional activation that are inhibited by ICP4 are discussed.

2016 ◽  
Vol 35 (4) ◽  
pp. 704-723 ◽  
Author(s):  
E.D. Moiseeva ◽  
N.P. Bazhulina ◽  
Y.G. Gursky ◽  
S.L. Grokhovsky ◽  
A.N. Surovaya ◽  
...  

2000 ◽  
Vol 74 (19) ◽  
pp. 8812-8822 ◽  
Author(s):  
Marina Mapelli ◽  
Martin Mühleisen ◽  
Giorgia Persico ◽  
Hans van der Zandt ◽  
Paul A. Tucker

ABSTRACT ICP8 is the major single-stranded DNA (ssDNA) binding protein of the herpes simplex virus type 1 and is required for the onset and maintenance of viral genomic replication. To identify regions responsible for the cooperative binding to ssDNA, several mutants of ICP8 have been characterized. Total reflection X-ray fluorescence experiments on the constructs confirmed the presence of one zinc atom per molecule. Comparative analysis of the mutants by electrophoretic mobility shift assays was done with oligonucleotides for which the number of bases is approximately that occluded by one protein molecule. The analysis indicated that neither removal of the 60-amino-acid C-terminal region nor Cys254Ser and Cys455Ser mutations qualitatively affect the intrinsic DNA binding ability of ICP8. The C-terminal deletion mutants, however, exhibit a total loss of cooperativity on longer ssDNA stretches. This behavior is only slightly modulated by the two-cysteine substitution. Circular dichroism experiments suggest a role for this C-terminal tail in protein stabilization as well as in intermolecular interactions. The results show that the cooperative nature of the ssDNA binding of ICP8 is localized in the 60-residue C-terminal region. Since the anchoring of a C- or N-terminal arm of one protein onto the adjacent one on the DNA strand has been reported for other ssDNA binding proteins, this appears to be the general structural mechanism responsible for the cooperative ssDNA binding by this class of protein.


Sign in / Sign up

Export Citation Format

Share Document