scholarly journals Positive regulation of the vHNF1 promoter by the orphan receptors COUP-TF1/Ear3 and COUP-TFII/Arp1.

1996 ◽  
Vol 16 (3) ◽  
pp. 778-791 ◽  
Author(s):  
S C Power ◽  
S Cereghini

vHNF1 (also termed HNF1 beta) is a member of the hepatocyte nuclear fa ctor 1 (HNF1; also termed HNF1 alpha) family of homeodomain-containing transcription factors that interact with a sequence motif found in the regulatory regions of a large number of genes expressed mainly in the liver. It has been suggested that vHNF1 plays a role in early differentiation of specialized epithelia of several endoderm- and mesoderm-derived organs, with HNF1 playing a role in later stages. In support of this idea, expression of vHNF1 but not HNF1 is induced upon treatment of the embryonal carcinoma cell line F9 with retinoic acid. We have cloned and analyzed the vHNF1 promoter to gain a better understanding of the regulation of vHNF1 expression and how it relates to the expression of HNF1. We have identified five sites of DNA-protein interaction within the first 260 bp upstream of the transcription start site, which involve at least three different families of transcription factors. Two sites, a distal DR-1 motif and a proximal octamer motif, are the most important for promoter activity. The DR-1 motif interacts with several members of the steroid hormone receptor superfamily including HNF4, COUP-TFI/Ear3, COUP-TFII/Arp1, and RAR alpha/RXR alpha heterodimers. The vHNF1 promoter is transactivated by COUP-TFI/Ear3 and COUP-TFII/Arp1 and, unlike the HNF1 promoter, is virtually unaffected by HNF4. Interestingly, the proximal octamer site and not the DR-1 site is required for COUP-TFI/Ear3 and COUP-TFII/Arp1 transactivation of the vHNF1 promoter. COUP-TFI/Ear3 does not bind directly to this proximal octamer site. We present evidence of an interaction between COUP-TFI/Ear3 and the octamer-binding proteins in vitro and in the cell, suggesting that COUP-TFI and COUP-TFII activate the vHNF1 promoter via an indirect mechanism.

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Itsuki Mueller ◽  
Ryosuke Kobayashi ◽  
Takayuki Nakajima ◽  
Maki Ishii ◽  
Kazushige Ogawa

The P19CL6 cell line is a useful model to study cardiac differentiation in vitro. However, large variations were noticed in the differentiation rates among previous reports as well as our individual experiments. To overcome the unstable differentiation, we established P19CL6-A1, a new clonal derivative of P19CL6 that could differentiate into cardiomyocytes more efficiently and stably than the parent using the double stimulation with 5-Aza and DMSO based on the previous report. We also introduced a new software, Visorhythm, that can analyze the temporal variations in the beating rhythms and can chart correlograms displaying the oscillated rhythms. Using P19CL6-A1-derived cardiomyocytes and the software, we demonstrated that the correlograms could clearly display the enhancement of beating rates by cardiotonic reagents. These indicate that a combination of P19CL6-A1 and Visorhythm is a useful tool that can provide invaluable assistance in inotropic drug discovery, drug screening, and toxicity testing.


1991 ◽  
Vol 11 (3) ◽  
pp. 1686-1695 ◽  
Author(s):  
M K Shivji ◽  
N B La Thangue

Murine F9 embryonal carcinoma (F9 EC) stem cells have an E1a-like transcription activity that is down-regulated as these cells differentiate to parietal endoderm. For the adenovirus E2A promoter, this activity requires at least two sequence-specific transcription factors, one that binds the cyclic AMP-responsive element (CRE) and the other, DRTF1, the DNA-binding activity of which is down-regulated as F9 EC cells differentiate. Here we report the characterization of several binding activities in F9 EC cell extracts, referred to as DRTF 1a, 1b and 1c, that recognize the DRTF1 cis-regulatory sequence (-70 to -50 region). These activities can be chromatographically separated but are not distinguishable by DNA sequence specificity. Activity 1a is a detergent-sensitive complex in which DNA binding is regulated by phosphorylation. In contrast, activities 1b and 1c are unaffected by these treatments but exist as multicomponent protein complexes even before DNA binding. Two sets of DNA-binding polypeptides, p50DR and p30DR, affinity purified from F9 EC cell extracts produce complexes 1b and 1c. Both polypeptides appear to be present in the same DNA-bound protein complex and both directly contact DNA. These affinity-purified polypeptides activate transcription in vitro in a binding-site-dependent manner. These data indicate the in F9 EC stem cells, multicomponent differentiation-regulated transcription factors contribute to the cellular E1a-like activity.


Sign in / Sign up

Export Citation Format

Share Document