embryonal carcinoma cell
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 3)

H-INDEX

39
(FIVE YEARS 0)

2021 ◽  
Vol 23 (1) ◽  
pp. 46
Author(s):  
Wing-Keung Chu ◽  
Li-Man Hung ◽  
Chun-Wei Hou ◽  
Jan-Kan Chen

The pluripotent transcription factor NANOG is essential for maintaining embryonic stem cells and driving tumorigenesis. We previously showed that PKC activity is involved in the regulation of NANOG expression. To explore the possible involvement of microRNAs in regulating the expression of key pluripotency factors, we performed a genome-wide analysis of microRNA expression in the embryonal carcinoma cell line NT2/D1 in the presence of the PKC activator, PMA. We found that MIR630 was significantly upregulated in PMA-treated cells. Experimentally, we showed that transfection of MIR630 mimic into embryonal carcinoma cell lines directly targeted the 3′UTR of OCT4, SOX2, and NANOG and markedly suppressed their expression. RNAhybrid and RNA22 algorithms were used to predict miRNA target sites in the NANOG 3’UTR, four possible target sites of MIR630 were identified. To examine the functional interaction between MIR630 and NANOG mRNA, the predicted MIR630 target sites in the NANOG 3’UTR were deleted and the activity of the reporters were compared. After targeted mutation of the predicted MIR630 target sites, the MIR630 mimic inhibited NANOG significantly less than the wild-type reporters. It is worth noting that mutation of a single putative binding site in the 3’UTR of NANOG did not completely abolish MIR630-mediated suppression, suggesting that MIR630 in the NANOG 3’UTR may have multiple binding sites and act together to maximally repress NANOG expression. Interestingly, MIR630 mimics significantly downregulated NANOG gene transcription. Exogenous expression of OCT4, SOX2, and NANOG lacking the 3’UTR almost completely rescued the reduced transcriptional activity of MIR630. MIR630 mediated the expression of differentiation markers in NT2/D1 cells, suggesting that MIR630 leads to the differentiation of NT2/D1 cell. Our findings show that MIR630 represses NANOG through transcriptional and post-transcriptional regulation, suggesting a direct link between core pluripotency factors and MIR630.



2021 ◽  
Author(s):  
Danielle M. Spice ◽  
Joshua Dierolf ◽  
Gregory M. Kelly

AbstractHedgehog signaling is essential for vertebrate development, however, less is known about the negative regulators that influence this pathway during the differentiation of cell fates. Using the mouse P19 embryonal carcinoma cell model, Suppressor of Fused (SUFU), a negative regulator of the Hedgehog pathway, was investigated during retinoic acid-induced neural differentiation. We found Hedgehog signaling was activated in the early phase of neural differentiation and became inactive during terminal differentiation of neurons and astrocytes. SUFU, which regulates signaling at the level of GLI, remained relatively unchanged during the differentiation process, however SUFU loss through CRISPIR-Cas9 gene editing resulted in decreased cell proliferation and ectopic expression of Hedgehog target genes. Interestingly, SUFU-deficient cells were unable to differentiate in the absence of retinoic acid, but when differentiated in its presence they showed delayed and decreased astrocyte differentiation; neuron differentiation did not appear to be affected. Retinoic acid-induced differentiation also caused ectopic activation of Hh target genes in SUFU-deficient cells and while the absence of the GLI3 transcriptional inhibitor suggested the pathway was active, no full-length GLI3 was detected even though the message encoding Gli3 was present. Thus, the study would indicate the proper timing and proportion of glial cell differentiation requires SUFU, and its normal regulation of GLI3 to maintain Hh signaling in an inactive state.



2021 ◽  
Vol 22 (3) ◽  
pp. 1438
Author(s):  
Kyong-Oh Shin ◽  
Maftuna Shamshiddinova ◽  
Jung-No Lee ◽  
Kwang-Sik Lee ◽  
Yong-Moon Lee

Sphingosine-1-phosphate (S1P) is a unique lipid ligand binding to S1P receptors to transduce various cell survival or proliferation signals via small G proteins. S1P lyase (S1PL) is the specific enzyme that degrades S1P to phosphoethanolamine and (2E)-hexadecenal and therefore regulates S1P levels. S1PL also degrades dihydrosphingosine-1-phosphate (Sa1P), with a higher affinity to produce hexadecanal. Here, we developed a newly designed assay using a C17-Sa1P substrate that degrades into pentadecanal and phosphoethanolamine. For higher sensitivity in pentadecanal analysis, we developed a quantitative protocol as well as a 5,5-dimethyl cyclohexanedione (5,5-dimethyl CHD) derivatization method. The derivatization conditions were optimized for the reaction time, temperature, and concentrations of the 5,5-dimethyl CHD reagent, acetic acid, and ammonium acetate. The S1PL reaction in the cell lysate after spiking 20 µM of C17-Sa1P for 20 min was linear to the total protein concentrations of 50 µg. The S1PL levels (4 pmol/mg/min) were readily detected in this HPLC with fluorescence detection (λex = 366 nm, λem = 455 nm). The S1PL-catalyzed reaction was linear over 30 min and yielded a Km value of 2.68 μM for C17-Sa1P. This new method was validated to measure the S1PL activity of mouse embryonal carcinoma cell lines of the standard cell (F9-0), S1PL knockdown cells (F9-2), and S1PL-overexpressed cells (F9-4). Furthermore, we treated F9-4 cells with different S1PL inhibitors such as FTY720, 4-deoxypyridoxine (DOP), and the deletion of pyridoxal-5-phosphate (P5P), an essential cofactor for S1PL activity, and observed a significant decrease in pentadecanal relative to the untreated cells. In conclusion, we developed a highly sensitive S1PL assay using a C17-Sa1P substrate for pentadecanal quantification for application in the characterization of S1PL activity in vitro.



2019 ◽  
Vol 106 (3-4) ◽  
pp. 1085-1103 ◽  
Author(s):  
Maryam Shariatzadeh ◽  
Amit Chandra ◽  
Samantha L Wilson ◽  
Mark J McCall ◽  
Lise Morizur ◽  
...  

AbstractEstablishing how to effectively manufacture cell therapies is an industry-level problem. Decentralised manufacturing is of increasing importance, and its challenges are recognised by healthcare regulators with deviations and comparability issues receiving specific attention from them. This paper is the first to report the deviations and other risks encountered when implementing the expansion of human pluripotent stem cells (hPSCs) in an automated three international site–decentralised manufacturing setting. An experimental demonstrator project expanded a human embryonal carcinoma cell line (2102Ep) at three development sites in France, Germany and the UK using the CompacT SelecT (Sartorius Stedim, Royston, UK) automated cell culture platform. Anticipated variations between sites spanned material input, features of the process itself and production system details including different quality management systems and personnel. Where possible, these were pre-addressed by implementing strategies including standardisation, cell bank mycoplasma testing and specific engineering and process improvements. However, despite such measures, unexpected deviations occurred between sites including software incompatibility and machine/process errors together with uncharacteristic contaminations. Many only became apparent during process proving or during the process run. Further, parameters including growth rate and viability discrepancies could only be determined post-run, preventing ‘live’ corrective measures. The work confirms the critical nature of approaches usually taken in Good Manufacturing Practice (GMP) manufacturing settings and especially emphasises the requirement for monitoring steps to be included within the production system. Real-time process monitoring coupled with carefully structured quality systems is essential for multiple site working including clarity of decision-making roles. Additionally, an over-reliance upon post-process visual microscopic comparisons has major limitations; it is difficult for non-experts to detect deleterious culture changes and such detection is slow.



Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1224 ◽  
Author(s):  
Silvia Schmidtova ◽  
Katarina Kalavska ◽  
Katarina Gercakova ◽  
Zuzana Cierna ◽  
Svetlana Miklikova ◽  
...  

Cisplatin resistance in testicular germ cell tumors (TGCTs) is a clinical challenge. We investigated the underlying mechanisms associated with cancer stem cell (CSC) markers and modalities circumventing the chemoresistance. Chemoresistant models (designated as CisR) of human embryonal carcinoma cell lines NTERA-2 and NCCIT were derived and characterized using flow cytometry, gene expression, functional and protein arrays. Tumorigenicity was determined on immunodeficient mouse model. Disulfiram was used to examine chemosensitization of resistant cells. ALDH1A3 isoform expression was evaluated by immunohistochemistry in 216 patients’ tissue samples. Chemoresistant cells were significantly more resistant to cisplatin, carboplatin and oxaliplatin compared to parental cells. NTERA-2 CisR cells exhibited altered morphology and increased tumorigenicity. High ALDH1A3 expression and increased ALDH activity were detected in both refractory cell lines. Disulfiram in combination with cisplatin showed synergy for NTERA-2 CisR and NCCIT CisR cells and inhibited growth of NTERA-2 CisR xenografts. Significantly higher ALDH1A3 expression was detected in TGCTs patients’ tissue samples compared to normal testicular tissue. We characterized novel clinically relevant model of chemoresistant TGCTs, for the first time identified the ALDH1A3 as a therapeutic target in TGCTs and more importantly, showed that disulfiram represents a viable treatment option for refractory TGCTs.



2018 ◽  
Vol 20 (1) ◽  
pp. 21 ◽  
Author(s):  
Christoph Oing ◽  
Izudin Verem ◽  
Wael Mansour ◽  
Carsten Bokemeyer ◽  
Sergey Dyshlovoy ◽  
...  

Despite high cure rates, about 20% of patients with advanced germ cell tumors (GCTs) fail cisplatin-based chemotherapy. High levels of DNA methylation have been identified in GCTs and linked to cisplatin resistance. Here, we examined the effects of DNA hypomethylating 5-azacitidine (5-aza) on two embryonal carcinoma cell lines (NCCIT, 2102Ep) and their cisplatin-resistant isogenic derivatives. Effects on cell viability and cisplatin sensitivity were assessed by the trypan blue exclusion method. Western blotting was used to examine induction of apoptosis 5-aza and results were validated by flow cytometry. Single agent treatment with 5-aza strongly impacted viability and induced apoptosis at low nanomolar concentrations, both in cisplatin-sensitive and -resistant cell lines. 5-aza exerted an immediate apoptotic response, followed by a prolonged inhibitory effect on cell viability and cell-cycle progression. Sequential treatment with 5-aza and cisplatin reduced cellular survival of the cisplatin-resistant sublines already at nanomolar concentrations, suggesting a partial restoration of cisplatin sensitivity by the compound. 5-aza demonstrated anti-tumor activity as a single agent at low nanomolar concentrations in GCT cells, irrespective of cisplatin-sensitivity. 5-aza may also have the potential at least to partially restore cisplatin-sensitivity in non-seminoma cells, supporting the hypothesis that combining DNA demethylating agents with cisplatin-based chemotherapy may be a valid therapeutic approach in patients with refractory GCTs.



2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Zhengzheng Duan ◽  
Ping Ping ◽  
Guishuan Wang ◽  
Xiansheng Zhang ◽  
Fei Sun

Intermediate-sized non-coding RNAs (imsncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. In the present research, we selected imsncRNA 761 (imsnc761) as a research target. Expression analyses in a previous study showed that imsnc761 was down-regulated in maturation-arrested testis tissues as compared with the level in normal controls. In the present study, we found that imsnc761 could interact with DEAD-box helicase 6 (DDX6) to induce NTERA-2 (NT2 (testicular embryonal carcinoma cell)) cell apoptosis and proliferation inhibition via the p53 pathway. This interaction between imsnc761 and DDX6 also inhibited mitochondrial function and specific gene transcription and translation. To facilitate further research, we used label-free quantitation method to analyze the associated differences in Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways and biological processes. This confirmed the changes in several specific pathways, which matched our molecular experimental results.





Sign in / Sign up

Export Citation Format

Share Document