scholarly journals Alternate utilization of two regulatory domains within the Moloney murine sarcoma virus long terminal repeat.

1985 ◽  
Vol 5 (8) ◽  
pp. 1959-1968 ◽  
Author(s):  
B J Graves ◽  
S P Eisenberg ◽  
D M Coen ◽  
S L McKnight

The Moloney murine sarcoma virus long terminal repeat (LTR) harbors two distinct positive activators of transcription, namely, a distal signal and an enhancer. In this report we demonstrate that infection by herpes simplex virus (HSV) can markedly affect the utilization of these two Moloney murine sarcoma virus transcription signals. We investigated the HSV-mediated trans-acting effects with two goals in mind: first, to gain insight into LTR function, and second, to probe the mechanisms used by HSV to establish its own transcription cascade. In mock-infected cells, LTR-mediated expression was heavily dependent on the Moloney murine sarcoma virus enhancer but was effectively distal signal independent. HSV infection mobilized the use of the LTR distal signal and concomitantly alleviated enhancer dependence. Indeed, enhancer function may actually be inhibited by HSV trans-acting factors. These results suggest that the two positive control signals of the Moloney murine sarcoma virus LTR facilitate transcriptional activation by two different pathways. We further observed that the identity of the structural gene driven by the LRT, as well as the state of integration of a transfected template, can exert a substantial effect on the response of a template to HSV infection. According to these findings, we propose a tentative model to account for the initial temporal shift of the HSV transcriptional cascade.

1985 ◽  
Vol 5 (8) ◽  
pp. 1959-1968
Author(s):  
B J Graves ◽  
S P Eisenberg ◽  
D M Coen ◽  
S L McKnight

The Moloney murine sarcoma virus long terminal repeat (LTR) harbors two distinct positive activators of transcription, namely, a distal signal and an enhancer. In this report we demonstrate that infection by herpes simplex virus (HSV) can markedly affect the utilization of these two Moloney murine sarcoma virus transcription signals. We investigated the HSV-mediated trans-acting effects with two goals in mind: first, to gain insight into LTR function, and second, to probe the mechanisms used by HSV to establish its own transcription cascade. In mock-infected cells, LTR-mediated expression was heavily dependent on the Moloney murine sarcoma virus enhancer but was effectively distal signal independent. HSV infection mobilized the use of the LTR distal signal and concomitantly alleviated enhancer dependence. Indeed, enhancer function may actually be inhibited by HSV trans-acting factors. These results suggest that the two positive control signals of the Moloney murine sarcoma virus LTR facilitate transcriptional activation by two different pathways. We further observed that the identity of the structural gene driven by the LRT, as well as the state of integration of a transfected template, can exert a substantial effect on the response of a template to HSV infection. According to these findings, we propose a tentative model to account for the initial temporal shift of the HSV transcriptional cascade.


1984 ◽  
Vol 4 (10) ◽  
pp. 2128-2135
Author(s):  
K K Lueders ◽  
J W Fewell ◽  
E L Kuff ◽  
T Koch

We describe experiments designed to determine whether an endogenous intracisternal A-particle (IAP) gene randomly selected from a mouse embryo library has the potential to be transcriptionally active. Assays for IAP gene transcription were done with permanently transformed rat cells and transiently transfected monkey and mouse cells. The rat cells, which had integrated IAP gene copies, contained IAP RNA. A start site within the IAP 5' long terminal repeat (LTR) was localized by S1 mapping. The promoter activity of the IAP LTR was also measured in cells 48 h after the introduction of recombinant plasmids in which bacterial chloramphenicol acetyl transferase (CAT) encoding sequences were under the control of the LTR. The IAP LTR promoted CAT activity in mouse and monkey cells. In mouse L-cells, the levels of CAT activity were 10 to 25% of those promoted by an analogous recombinant containing the Moloney murine sarcoma virus LTR as the promoter. In contrast to the Moloney murine sarcoma virus LTR, the IAP LTR was five- to eightfold more active in monkey cells than in mouse cells. The 5' and 3' LTRs were equally active, and promoter activity was dependent on having the orientation of the LTRs with respect to the CAT gene the same as their orientation with respect to the IAP gene. A 5'-flanking sequence containing a member of the highly repetitive R-sequence family increased CAT activity in COS cells 11-fold when present along with the LTR. Our results indicate that the LTR of an endogenous mouse IAP gene can function as an efficient promoter in heterologous as well as homologous cells.


1985 ◽  
Vol 5 (8) ◽  
pp. 1948-1958
Author(s):  
B J Graves ◽  
R N Eisenman ◽  
S L McKnight

We identified three distinct elements within the Moloney murine sarcoma virus long terminal repeat that control transcription. The phenotypes of unidirectional deletion mutants of the long terminal repeat were assayed in microinjected frog oocytes and in transfected mouse fibroblasts. Steady-state levels of RNA bearing the same 5' terminus as the authentic Moloney murine sarcoma viral transcripts were measured by primer extension in assays that included a pseudo-wild-type internal reference. Mutant phenotypes define the boundaries of three functional elements. A region between 21 and 31 base pairs upstream from the mRNA cap site contains AT-rich sequences that function to establish the transcription start site. A second control element, termed the distal signal, lies between 31 and 84 base pairs upstream of the mRNA cap site. A CAT box consensus sequence is located at the 5' boundary of the distal signal. Additional components of the distal signal include a hexanucleotide sequence that is repeated four times. The distal signal augments transcription efficiency in oocytes but contributes only weakly to long terminal repeat-mediated expression in mouse fibroblasts. A third transcriptional control element lies between 156 and 364 base pairs upstream of the mRNA cap site. This element includes the 75-base-pair repeats previously identified as the Moloney murine sarcoma virus enhancer. In contrast to the distal signal, the Moloney murine sarcoma virus enhancer is crucial for significant expression in mouse fibroblasts but does not contribute to transcriptional expression in frog oocytes.


1984 ◽  
Vol 4 (10) ◽  
pp. 2128-2135 ◽  
Author(s):  
K K Lueders ◽  
J W Fewell ◽  
E L Kuff ◽  
T Koch

We describe experiments designed to determine whether an endogenous intracisternal A-particle (IAP) gene randomly selected from a mouse embryo library has the potential to be transcriptionally active. Assays for IAP gene transcription were done with permanently transformed rat cells and transiently transfected monkey and mouse cells. The rat cells, which had integrated IAP gene copies, contained IAP RNA. A start site within the IAP 5' long terminal repeat (LTR) was localized by S1 mapping. The promoter activity of the IAP LTR was also measured in cells 48 h after the introduction of recombinant plasmids in which bacterial chloramphenicol acetyl transferase (CAT) encoding sequences were under the control of the LTR. The IAP LTR promoted CAT activity in mouse and monkey cells. In mouse L-cells, the levels of CAT activity were 10 to 25% of those promoted by an analogous recombinant containing the Moloney murine sarcoma virus LTR as the promoter. In contrast to the Moloney murine sarcoma virus LTR, the IAP LTR was five- to eightfold more active in monkey cells than in mouse cells. The 5' and 3' LTRs were equally active, and promoter activity was dependent on having the orientation of the LTRs with respect to the CAT gene the same as their orientation with respect to the IAP gene. A 5'-flanking sequence containing a member of the highly repetitive R-sequence family increased CAT activity in COS cells 11-fold when present along with the LTR. Our results indicate that the LTR of an endogenous mouse IAP gene can function as an efficient promoter in heterologous as well as homologous cells.


1985 ◽  
Vol 5 (8) ◽  
pp. 1948-1958 ◽  
Author(s):  
B J Graves ◽  
R N Eisenman ◽  
S L McKnight

We identified three distinct elements within the Moloney murine sarcoma virus long terminal repeat that control transcription. The phenotypes of unidirectional deletion mutants of the long terminal repeat were assayed in microinjected frog oocytes and in transfected mouse fibroblasts. Steady-state levels of RNA bearing the same 5' terminus as the authentic Moloney murine sarcoma viral transcripts were measured by primer extension in assays that included a pseudo-wild-type internal reference. Mutant phenotypes define the boundaries of three functional elements. A region between 21 and 31 base pairs upstream from the mRNA cap site contains AT-rich sequences that function to establish the transcription start site. A second control element, termed the distal signal, lies between 31 and 84 base pairs upstream of the mRNA cap site. A CAT box consensus sequence is located at the 5' boundary of the distal signal. Additional components of the distal signal include a hexanucleotide sequence that is repeated four times. The distal signal augments transcription efficiency in oocytes but contributes only weakly to long terminal repeat-mediated expression in mouse fibroblasts. A third transcriptional control element lies between 156 and 364 base pairs upstream of the mRNA cap site. This element includes the 75-base-pair repeats previously identified as the Moloney murine sarcoma virus enhancer. In contrast to the distal signal, the Moloney murine sarcoma virus enhancer is crucial for significant expression in mouse fibroblasts but does not contribute to transcriptional expression in frog oocytes.


Science ◽  
1980 ◽  
Vol 210 (4475) ◽  
pp. 1249-1251 ◽  
Author(s):  
E. Chang ◽  
R. Ellis ◽  
E. Scolnick ◽  
D. Lowy

Sign in / Sign up

Export Citation Format

Share Document