adenine phosphoribosyltransferase
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 27)

H-INDEX

34
(FIVE YEARS 2)

Nephron ◽  
2021 ◽  
pp. 1-5
Author(s):  
Nicole Nourié ◽  
Hussein Nassereddine ◽  
Hiba Azar

Adenine phosphoribosyltransferase (APRT) deficiency is a rare disorder caused by an autosomal recessive genetic disease leading to the deposition of 2,8-dihydroxyadenine (2,8-DHA) in the kidney. The disease remains under-recognized, oftentimes diagnosed in late stages of renal insufficiency or a failed kidney allograft with biopsy-proven disease recurrence. Here, we present the case of a 59-year-old middle eastern male patient diagnosed with 2,8-DHA nephropathy after a very unusual presentation, and we show how the initiation of an appropriate therapy slowed down his evolution toward kidney replacement therapies. His disease was found to be secondary to a specific APRT gene variant c.188G>A p (Gly63Asp) also described in 4 other patients, all from middle eastern origins.


2021 ◽  
Author(s):  
Shahan Mamoor

Gynecologic cancers including cancers of the endometrium are a clinical problem (1-4). We mined published microarray data (5, 6) to discover genes associated with endometrial cancers by comparing transcriptomes of the normal endometrium and endometrial tumors from humans. We identified adenine phosphoribosyltransferase, encoded by APRT, as among the most differentially expressed genes, transcriptome-wide, in cancers of the endometrium. APRT was expressed at significantly higher levels in endometrial tumor tissues as compared to the endometrium. Importantly, primary tumor expression of APRT was correlated with overall survival in patients with endometrial cancer. APRT may be a molecule of interest in understanding the etiology or progression of human endometrial cancer.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 583
Author(s):  
Reena Lamichhane-Khadka ◽  
Santosh Dulal ◽  
Jesus A. Cuaron ◽  
Richard Pfeltz ◽  
Sushim Kumar Gupta ◽  
...  

Comparative genomic sequencing of laboratory-derived vancomycin-intermediate Staphylococcus aureus (VISA) (MM66-3 and MM66-4) revealed unique mutations in both MM66-3 (in apt and ssaA6), and MM66-4 (in apt and walK), compared to hetero-VISA parent strain MM66. Transcriptional profiling revealed that both MM66 VISA shared 79 upregulated genes and eight downregulated genes. Of these, 30.4% of the upregulated genes were associated with the cell envelope, whereas 75% of the downregulated genes were associated with virulence. In concordance with mutations and transcriptome alterations, both VISA strains demonstrated reduced autolysis, reduced growth in the presence of salt and reduced virulence factor activity. In addition to mutations in genes linked to cell wall metabolism (ssaA6 and walK), the same mutation in apt which encodes adenine phosphoribosyltransferase, was confirmed in both MM66 VISA. Apt plays a role in both adenine metabolism and accumulation and both MM66 VISA grew better than MM66 in the presence of adenine or 2-fluoroadenine indicating a reduction in the accumulation of these growth inhibiting compounds in the VISA strains. MM66 apt mutants isolated via 2-fluoroadenine selection also demonstrated reduced susceptibility to the cell wall lytic dye Congo red and vancomycin. Finding that apt mutations contribute to reduced vancomycin susceptibility once again suggests a role for altered purine metabolism in a VISA mechanism.


Author(s):  
Hrafnhildur L. Runolfsdottir ◽  
John A. Sayer ◽  
Olafur S. Indridason ◽  
Vidar O. Edvardsson ◽  
Brynjar O. Jensson ◽  
...  

AbstractAdenine phosphoribosyltransferase deficiency is a rare, autosomal recessive disorder of purine metabolism that causes nephrolithiasis and progressive chronic kidney disease. The small number of reported cases indicates an extremely low prevalence, although it has been suggested that missed diagnoses may play a role. We assessed the prevalence of APRT deficiency based on the frequency of causally-related APRT sequence variants in a diverse set of large genomic databases. A thorough search was carried out for all APRT variants that have been confirmed as pathogenic under recessive mode of inheritance, and the frequency of the identified variants examined in six population genomic databases: the deCODE genetics database, the UK Biobank, the 100,000 Genomes Project, the Genome Aggregation Database, the Human Genetic Variation Database and the Korean Variant Archive. The estimated frequency of homozygous genotypes was calculated using the Hardy-Weinberg equation. Sixty-two pathogenic APRT variants were identified, including six novel variants. Most common were the missense variants c.407T>C (p.(Met136Thr)) in Japan and c.194A>T (p.(Asp65Val)) in Iceland, as well as the splice-site variant c.400 + 2dup (p.(Ala108Glufs*3)) in the European population. Twenty-nine variants were detected in at least one of the six genomic databases. The highest cumulative minor allele frequency (cMAF) of pathogenic variants outside of Japan and Iceland was observed in the Irish population (0.2%), though no APRT deficiency cases have been reported in Ireland. The large number of cases in Japan and Iceland is consistent with a founder effect in these populations. There is no evidence for widespread underdiagnosis based on the current analysis.


2021 ◽  
Vol 35 (3) ◽  
Author(s):  
Guang‐Huar Young ◽  
Jiun‐Tsai Lin ◽  
Yi‐Fang Cheng ◽  
Chia‐Fang Ho ◽  
Qian‐Yu Kuok ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 346
Author(s):  
Julia Frisch ◽  
Tin Maršić ◽  
Christoph Loderer

Cladribine triphosphate is the active compound of the anti-cancer and multiple sclerosis drug Mavenclad (cladribine). Biosynthesis of such non-natural deoxyribonucleotides is challenging but important in order to study the pharmaceutical modes of action. In this study, we developed a novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate, starting with the nucleobase 2Cl-adenine and the generic co-substrate phosphoribosyl pyrophosphate. The cascade is comprised of the three enzymes, namely, adenine phosphoribosyltransferase (APT), polyphosphate kinase (PPK), and ribonucleotide reductase (RNR). APT catalyzes the binding of the nucleobase to the ribose moiety, followed by two consecutive phosphorylation reactions by PPK. The formed nucleoside triphosphate is reduced to the final product 2Cl-deoxyadenonsine triphosphate (cladribine triphosphate) by the RNR. The cascade is feasible, showing comparative product concentrations and yields to existing enzyme cascades for nucleotide biosynthesis. While this study is limited to the biosynthesis of cladribine triphosphate, the design of the cascade offers the potential to extend its application to other important deoxyribonucleotides.


2020 ◽  
Vol 184 (2) ◽  
pp. 607-619 ◽  
Author(s):  
Robert G. Orr ◽  
Stephen J. Foley ◽  
Catherine Sherman ◽  
Isidro Abreu ◽  
Giulia Galotto ◽  
...  

2020 ◽  
Author(s):  
Gino L. Turra ◽  
Luzia Schneider ◽  
Linda Liedgens ◽  
Marcel Deponte

AbstractLeishmania parasites include important pathogens and model organisms and are even used for the production of recombinant proteins. However, functional genomics and the characterization of essential genes are often limited in Leishmania because of low-throughput technologies for gene disruption or tagging and the absence of components for RNA interference. Here, we tested the T7 RNA polymerase-dependent CRISPR-Cas9 system by Beneke et al. and the glmS ribozyme-based knock-down system in the model parasite Leishmania tarentolae. We successfully deleted two reference genes encoding the flagellar motility factor Pf16 and the salvage-pathway enzyme adenine phosphoribosyltransferase, resulting in immotile and drug-resistant parasites, respectively. In contrast, we were unable to disrupt the gene encoding the mitochondrial flavoprotein Erv. Cultivation of L. tarentolae in standard BHI medium resulted in a constitutive down-regulation of an episomal mCherry-glmS reporter by 40 to 60%. For inducible knock-downs, we evaluated the growth of L. tarentolae in alternative media and identified supplemented MEM, IMDM and McCoy’s 5A medium as candidates. Cultivation in supplemented MEM allowed an inducible, glucosamine concentration-dependent down-regulation of the episomal mCherry-glmS reporter by more than 70%. However, chromosomal glmS-tagging of the genes encoding Pf16, adenine phosphoribosyltransferase or Erv did not reveal a knock-down phenotype. Our data demonstrate the suitability of the CRISPR-Cas9 system for the disruption and tagging of genes in L. tarentolae as well as the limitations of the glmS system, which was restricted to moderate efficiencies for episomal knock-downs and caused no detectable phenotype for chromosomal knock-downs.


Sign in / Sign up

Export Citation Format

Share Document