Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus

1985 ◽  
Vol 5 (9) ◽  
pp. 2197-2203
Author(s):  
M S Lakshmikumaran ◽  
E D'Ambrosio ◽  
L A Laimins ◽  
D T Lin ◽  
A V Furano

The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.

1985 ◽  
Vol 5 (9) ◽  
pp. 2197-2203 ◽  
Author(s):  
M S Lakshmikumaran ◽  
E D'Ambrosio ◽  
L A Laimins ◽  
D T Lin ◽  
A V Furano

The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.


2002 ◽  
Vol 127 (6) ◽  
pp. 925-930 ◽  
Author(s):  
Jiahua Xie ◽  
Todd C. Wehner ◽  
Mark A. Conkling

Combining the use of PCR and single-strand conformation polymorphisms (SSCP), nine sequences from the cucumber genome were successfully identified and cloned that encoded two well-conserved asparagine-proline-alanine (NPA) domain homologues to aquaporin genes. The sensitivity and detection efficiency of SSCP and restriction enzyme analysis for detecting DNA sequence variation were evaluated using similar-sized DNA fragments. The SSCP analysis was more sensitive and efficient for discriminating different clones than restriction enzyme analysis, although some sequence variation inside similar-sized DNA fragments could be identified by restriction analysis. Consideration of the results of SSCP analysis with DNA sequence information indicated that one or two base pair changes in the amplified regions could be detected. Moreover, the SSCP analysis results of genomic DNA PCR products that were amplified by degenerate primers can provide rough information about the number of member genes. If the SSCP bands of a cloned fragment (such as CRB7) did not have the corresponding bands from genomic DNA PCR products, that fragment might be a misamplified product. The PCR-based SSCP method with degenerate oligonucleotide primers should facilitate the cloning of member genes.


1990 ◽  
Vol 15 (4) ◽  
pp. 261-269
Author(s):  
V. S. Gupta ◽  
M. S. Dhar ◽  
B. G. Patil ◽  
G. S. Narvekar ◽  
S. R. Ra Wat ◽  
...  

Author(s):  
Dwight R. Johnson ◽  
Cheryl L. Romana ◽  
Carey D. Rehder ◽  
Joanne Dehnbostel ◽  
Edward L. Kaplan

2011 ◽  
Vol 37 (4) ◽  
pp. 521-526 ◽  
Author(s):  
Simone Gonçalves Senna ◽  
Ana Grazia Marsico ◽  
Gisele Betzler de Oliveira Vieira ◽  
Luciana Fonseca Sobral ◽  
Philip Noel Suffys ◽  
...  

OBJETIVO: Identificar micobactérias não tuberculosas (MNT) isoladas de sítios estéreis em pacientes internados no Hospital Universitário Clementino Fraga Filho, Rio de Janeiro (RJ) entre 2001 e 2006. MÉTODOS: Durante o período do estudo, 34 isolados de MNT de sítios estéreis de 14 pacientes, a maioria HIV positivos, foram submetidos a identificação fenotípica e hsp65 PCR-restriction enzyme analysis (PRA, análise por enzimas de restrição por PCR do gene hsp65). RESULTADOS: A maioria dos isolados foi identificada como Mycobacterium avium, seguida por M. monacense, M. kansasii e M. abscessus em menores proporções. CONCLUSÕES: A combinação de PRA, um método relativamente simples e de baixo custo, com algumas características fenotípicas pode fornecer a identificação correta de MNT na rotina de laboratórios clínicos.


The Lancet ◽  
1981 ◽  
Vol 318 (8260-8261) ◽  
pp. 1424 ◽  
Author(s):  
IsabelW Smith ◽  
N.J Maitland ◽  
J.F Peutherer ◽  
D.H.H Robertson

Sign in / Sign up

Export Citation Format

Share Document