scholarly journals Human purine nucleoside phosphorylase and adenosine deaminase: gene transfer into cultured cells and murine hematopoietic stem cells by using recombinant amphotropic retroviruses.

1987 ◽  
Vol 7 (2) ◽  
pp. 838-846 ◽  
Author(s):  
R S McIvor ◽  
M J Johnson ◽  
A D Miller ◽  
S Pitts ◽  
S R Williams ◽  
...  

Cell lines were established which produced high titers (approximately 10(6) infectious units per ml) of amphotropic, replication-defective recombinant retroviruses which transduced sequences encoding either human purine nucleoside phosphorylase (PNP) or adenosine deaminase (ADA). These viruses also contained a human hypoxanthine phosphoribosyltransferase gene as a selectable marker and a mouse metallothionein promoter (MMP) sequence just upstream from the PNP or ADA genes. Virus structure was maintained through the replication cycle if a short (216-base pair) MMP sequence was used. However, the use of a longer (1,834-base pair) MMP sequence resulted in the deletion of a significant portion of the recombinant virus genome, including the transcriptional regulatory elements of the MMP sequence. Northern analysis indicated a predominance of genome length transcripts in cells infected with deleted virus. The demonstration of substantial human PNP or ADA activity in virus-infected mouse fibroblasts by isozyme analysis suggested that active gene product was translated from either spliced or bicistronic message. The deleted ADA and PNP viruses were introduced into mouse hematopoietic stem cells by cocultivating freshly explanted bone marrow with virus producer cells. The infected marrow cells were injected into irradiated, syngeneic recipient mice, and the presence of integrated ADA or PNP proviral sequences was demonstrated in the DNA of spleen colonies by Southern analysis. Failure of these integrated proviral sequences to express active, human isozyme in spleen colony tissue indicated the existence of some regulatory constraint not active in cultured mouse cells.

1987 ◽  
Vol 7 (2) ◽  
pp. 838-846
Author(s):  
R S McIvor ◽  
M J Johnson ◽  
A D Miller ◽  
S Pitts ◽  
S R Williams ◽  
...  

Cell lines were established which produced high titers (approximately 10(6) infectious units per ml) of amphotropic, replication-defective recombinant retroviruses which transduced sequences encoding either human purine nucleoside phosphorylase (PNP) or adenosine deaminase (ADA). These viruses also contained a human hypoxanthine phosphoribosyltransferase gene as a selectable marker and a mouse metallothionein promoter (MMP) sequence just upstream from the PNP or ADA genes. Virus structure was maintained through the replication cycle if a short (216-base pair) MMP sequence was used. However, the use of a longer (1,834-base pair) MMP sequence resulted in the deletion of a significant portion of the recombinant virus genome, including the transcriptional regulatory elements of the MMP sequence. Northern analysis indicated a predominance of genome length transcripts in cells infected with deleted virus. The demonstration of substantial human PNP or ADA activity in virus-infected mouse fibroblasts by isozyme analysis suggested that active gene product was translated from either spliced or bicistronic message. The deleted ADA and PNP viruses were introduced into mouse hematopoietic stem cells by cocultivating freshly explanted bone marrow with virus producer cells. The infected marrow cells were injected into irradiated, syngeneic recipient mice, and the presence of integrated ADA or PNP proviral sequences was demonstrated in the DNA of spleen colonies by Southern analysis. Failure of these integrated proviral sequences to express active, human isozyme in spleen colony tissue indicated the existence of some regulatory constraint not active in cultured mouse cells.


2018 ◽  
Vol 5 (2) ◽  
pp. 49-56
Author(s):  
Michael Tsui ◽  
Jeremy Biro ◽  
Jonathan Chan ◽  
Weixian Min ◽  
Eyal Grunebaum

Background: Inherited defects in the function of the purine nucleoside phosphorylase (PNP) enzyme can cause severe T cell immune deficiency and early death from infection, autoimmunity, or malignancy. In addition, more than 50% of patients suffer diverse non-infectious neurological complications. However the cause for the neurological abnormalities are not known. Objectives: Differentiate induced pluripotent stem cells (iPSC) from PNP-deficient patients into neuronal cells to better understand the effects of impaired purine metabolism on neuronal development. Methods: Sendai virus was used to generate pluripotent stem cells from PNP-deficient and healthy control lymphoblastoid cells. Cells were differentiated into neuronal cells through the formation of embryoid bodies. Results: After demonstration of pluripotency, normal karyotype, and retention of the PNP deficiency state, iPSC were differentiated into neuronal cells. PNP-deficient neuronal cells had reduced soma and nuclei size in comparison to cells derived from healthy controls. Spontaneous apoptosis, determined by Caspase-3 expression, was increased in PNP-deficient cells. Conclusions: iPSC from PNP-deficient patients can be differentiated into neuronal cells, thereby providing an important tool to study the effects of impaired purine metabolism on neuronal development and potential treatments. Statement of novelty: We report here the first generation and use of neuronal cells derived from induced pluripotent stem cells to model human PNP deficiency, thereby providing an important tool for better understanding and management of this condition.


1990 ◽  
Vol 87 (1) ◽  
pp. 439-443 ◽  
Author(s):  
J. M. Wilson ◽  
O. Danos ◽  
M. Grossman ◽  
D. H. Raulet ◽  
R. C. Mulligan

1975 ◽  
Vol 58 (3) ◽  
pp. 277-282 ◽  
Author(s):  
Tsuneo Nishizawa ◽  
Yutaro Nishida ◽  
Ieo Akaoka ◽  
Takashi Yoshimura

Sign in / Sign up

Export Citation Format

Share Document