coordinate regulation
Recently Published Documents


TOTAL DOCUMENTS

487
(FIVE YEARS 27)

H-INDEX

79
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Edouard Charlebois ◽  
Carine Fillebeen ◽  
Angeliki Katsarou ◽  
Aleksandr Rabinovich ◽  
Kazimierz Wisniewski ◽  
...  

The iron hormone hepcidin is transcriptionally activated by iron or inflammation via distinct, partially overlapping pathways. We addressed how iron affects inflammatory hepcidin levels and the ensuing hypoferremic response. Dietary iron overload did not mitigate hepcidin induction in LPS-treated wt mice but prevented effective inflammatory hypoferremia. Likewise, LPS modestly decreased serum iron in hepcidin-deficient Hjv-/- mice, model of hemochromatosis. Synthetic hepcidin triggered hypoferremia only in control but not iron-loaded wt animals. Furthermore, it dramatically decreased hepatic and splenic ferroportin in Hjv-/- mice on standard or iron-deficient diet, but only triggered hypoferremia in the latter. Mechanistically, iron induced liver ferroportin mRNA translation, thereby antagonizing hepcidin-mediated hypoferremia. Conversely, iron depletion suppressed de novo ferroportin synthesis in Hjv-/- livers, allowing exogenous hepcidin to cause hypoferremia. Consequently, prolonged LPS treatment eliminating ferroportin mRNA permitted hepcidin-mediated hypoferremia in iron-loaded mice. Thus, liver ferroportin mRNA translation is critical determinant of serum iron and finetunes hepcidin-dependent functional outcomes. Our data indicate a crosstalk between hepcidin/ferroportin and IRE/IRP systems. Moreover, they suggest that hepcidin supplementation therapy is more efficient combined with iron depletion.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5129
Author(s):  
Robert P. Walker ◽  
Zhi-Hui Chen ◽  
Franco Famiani

Gluconeogenesis is a key interface between organic acid/amino acid/lipid and sugar metabolism. The aims of this article are four-fold. First, to provide a concise overview of plant gluconeogenesis. Second, to emphasise the widespread occurrence of gluconeogenesis and its utilisation in diverse processes. Third, to stress the importance of the vacuolar storage and release of Krebs cycle acids/nitrogenous compounds, and of the role of gluconeogenesis and malic enzyme in this process. Fourth, to outline the contribution of fine control of enzyme activity to the coordinate-regulation of gluconeogenesis and malate metabolism, and the importance of cytosolic pH in this.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Megan Leask ◽  
Mackenzie Lovegrove ◽  
Abigail Walker ◽  
Elizabeth Duncan ◽  
Peter Dearden

Abstract Background Conserved syntenic gene complexes are rare in Arthropods and likely only retained due to functional constraint. Numerous sHSPs have been identified in the genomes of insects, some of which are located clustered in close proximity. Previous phylogenetic analyses of these clustered sHSP have been limited to a small number of holometabolous insect species and have not determined the pattern of evolution of the clustered sHSP genes (sHSP-C) in insect or Arthropod lineages. Results Using eight genomes from representative insect orders and three non-insect arthropod genomes we have identified that a syntenic cluster of sHSPs (sHSP-C) is a hallmark of most Arthropod genomes. Using 11 genomes from Hymenopteran species our phylogenetic analyses have refined the evolution of the sHSP-C in Hymenoptera and found that the sHSP-C is order-specific with evidence of birth-and-death evolution in the hymenopteran lineage. Finally we have shown that the honeybee sHSP-C is co-ordinately expressed and is marked by genomic features, including H3K27me3 histone marks consistent with coordinate regulation, during honeybee ovary activation. Conclusions The syntenic sHSP-C is present in most insect genomes, and its conserved coordinate expression and regulation implies that it is an integral genomic component of environmental response in arthropods.


Author(s):  
Yeonghyeon Lee ◽  
Jaejin Kim ◽  
Mi-Sung Kim ◽  
Yoojin Kwon ◽  
Sanghee Shin ◽  
...  

2021 ◽  
pp. 100575
Author(s):  
Jeffry C. Granados ◽  
Anne Richelle ◽  
Jahir M. Gutierrez ◽  
Patrick Zhang ◽  
Xinlian Zhang ◽  
...  

2021 ◽  
Author(s):  
Megan Leask ◽  
Mackenzie Lovegrove ◽  
Abigail Walker ◽  
Elizabeth Duncan ◽  
Peter Dearden

Abstract Background Conserved syntenic gene complexes are rare in Arthropods and likely only retained due to functional constraint. Numerous sHSPs have been identified in the genomes of insects, some of which are located clustered in close proximity. Previous phylogenetic analyses of these clustered sHSP have been limited to a small number of holometabolous insect species and have not determined the pattern of evolution of the clustered sHSP genes (sHSP-C) in insect or Arthropod lineages. Results Using eight genomes from representative insect orders and three non-insect arthropod genomes we have identified that a syntenic cluster of sHSPs (sHSP-C) is a hallmark of most Arthropod genomes. Using 11 genomes from Hymenopteran species our phylogenetic analyses have refined the evolution of the sHSP-C in Hymenoptera and found that the sHSP-C is order-specific with evidence of birth-and-death evolution in the hymenopteran lineage. Finally we have shown that the honeybee sHSP-C is co-ordinately expressed and is marked by genomic features, including H3K27me3 histone marks consistent with coordinate regulation, during honeybee ovary activation. Conclusions The syntenic sHSP-C is present in most insect genomes, and its conserved coordinate expression and regulation implies that it is an integral genomic component of environmental response in arthropods.


2020 ◽  
Author(s):  
Omar A. Itani ◽  
Xuefei Zhong ◽  
Xiaoting Tang ◽  
Barbara A. Scott ◽  
Jun Yi Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document