scholarly journals Nonsense mutations of the ornithine decarboxylase structural gene of Neurospora crassa.

1987 ◽  
Vol 7 (3) ◽  
pp. 1122-1128 ◽  
Author(s):  
R H Davis ◽  
L V Hynes ◽  
P Eversole-Cire

Ornithine decarboxylase (ODC) (EC 4.1.1.17) is an early enzyme of polyamine synthesis, and its activity rises quickly at the onset of growth and differentiation in most eucaryotes. Some have speculated that the enzyme protein may have a role in the synthesis of rRNA in addition to its role in catalyzing the decarboxylation of ornithine (G. D. Kuehn and V. J. Atmar, Fed. Proc. 41:3078-3083, 1982; D. H. Russell, Proc. Natl. Acad. Sci. USA 80:1318-1321, 1983). To test this possibility, we sought mutational evidence for the indispensability of the ODC protein for normal growth of Neurospora crassa. We found three new, ODC-deficient mutants that lacked ODC protein. Among these and by reversion analysis of an earlier set of mutants, we found that two ODC-deficient mutants carried nonsense mutations in the ODC structural gene, spe-1. Allele LV10 imparted a complete deficiency for enzyme activity (less than 0.006% of normal) and had no detectable ODC antigen. Allele PE4 imparted a weak activity to cells (0.1% of derepressed spe+ cultures) and encoded a lower-molecular-weight ODC subunit (Mr = 43,000) in comparison to that of the wild-type strain (Mr = 53,000). Strains carrying either mutation, like other spe-1 mutants, grew at a normal rate in exponential culture if the medium was supplemented with spermidine, the main end product of the polyamine pathway in N. crassa. Unless an antigenically silent, N-terminal fragment with an indispensable role persists in the LV10-bearing mutant, we conclude that the ODC protein has no role in the vegetative growth of this organism other than the synthesis of polyamines. The data extend earlier evidence that spe-1 is the structural gene for ODC in N. crassa. The activity found in mutants bearing allele PE4 suggests that the amino acids nearest the carboxy terminus do not contribute to the active site of the enzyme.

1987 ◽  
Vol 7 (3) ◽  
pp. 1122-1128
Author(s):  
R H Davis ◽  
L V Hynes ◽  
P Eversole-Cire

Ornithine decarboxylase (ODC) (EC 4.1.1.17) is an early enzyme of polyamine synthesis, and its activity rises quickly at the onset of growth and differentiation in most eucaryotes. Some have speculated that the enzyme protein may have a role in the synthesis of rRNA in addition to its role in catalyzing the decarboxylation of ornithine (G. D. Kuehn and V. J. Atmar, Fed. Proc. 41:3078-3083, 1982; D. H. Russell, Proc. Natl. Acad. Sci. USA 80:1318-1321, 1983). To test this possibility, we sought mutational evidence for the indispensability of the ODC protein for normal growth of Neurospora crassa. We found three new, ODC-deficient mutants that lacked ODC protein. Among these and by reversion analysis of an earlier set of mutants, we found that two ODC-deficient mutants carried nonsense mutations in the ODC structural gene, spe-1. Allele LV10 imparted a complete deficiency for enzyme activity (less than 0.006% of normal) and had no detectable ODC antigen. Allele PE4 imparted a weak activity to cells (0.1% of derepressed spe+ cultures) and encoded a lower-molecular-weight ODC subunit (Mr = 43,000) in comparison to that of the wild-type strain (Mr = 53,000). Strains carrying either mutation, like other spe-1 mutants, grew at a normal rate in exponential culture if the medium was supplemented with spermidine, the main end product of the polyamine pathway in N. crassa. Unless an antigenically silent, N-terminal fragment with an indispensable role persists in the LV10-bearing mutant, we conclude that the ODC protein has no role in the vegetative growth of this organism other than the synthesis of polyamines. The data extend earlier evidence that spe-1 is the structural gene for ODC in N. crassa. The activity found in mutants bearing allele PE4 suggests that the amino acids nearest the carboxy terminus do not contribute to the active site of the enzyme.


1985 ◽  
Vol 5 (6) ◽  
pp. 1301-1306
Author(s):  
P Eversole ◽  
J J DiGangi ◽  
T Menees ◽  
R H Davis

To define the structural gene for ornithine decarboxylase (ODC) in Neurospora crassa, we sought mutants with kinetically altered enzyme. Four mutants, PE4, PE7, PE69, and PE85, were isolated. They were able to grow slowly at 25 degrees C on minimal medium but required putrescine or spermidine supplementation for growth at 35 degrees C. The mutants did not complement with one another or with ODC-less spe-1 mutants isolated in earlier studies. In all of the mutants isolated to date, the mutations map at the spe-1 locus on linkage group V. Strains carrying mutations PE4, PE7, and PE85 displayed a small amount of residual ODC activity in extracts. None of them had a temperature-sensitive enzyme. The enzyme of the PE85 mutant had a 25-fold higher Km for ornithine (5mM) than did the enzyme of wild-type or the PE4 mutant (ca. 0.2 mM). The enzyme of this mutant was more stable to heat than was the wild-type enzyme. These characteristics were normal in the mutant carrying allele PE4. The mutant carrying PE85 was able to grow well at 25 degrees C and weakly at 35 degrees C with ornithine supplementation. This mutant and three ODC-less mutants isolated previously displayed a polypeptide corresponding to ODC in Western immunoblots with antibody raised to purified wild-type ODC. We conclude that spe-1 is the structural gene for the ODC.


1985 ◽  
Vol 5 (6) ◽  
pp. 1301-1306 ◽  
Author(s):  
P Eversole ◽  
J J DiGangi ◽  
T Menees ◽  
R H Davis

To define the structural gene for ornithine decarboxylase (ODC) in Neurospora crassa, we sought mutants with kinetically altered enzyme. Four mutants, PE4, PE7, PE69, and PE85, were isolated. They were able to grow slowly at 25 degrees C on minimal medium but required putrescine or spermidine supplementation for growth at 35 degrees C. The mutants did not complement with one another or with ODC-less spe-1 mutants isolated in earlier studies. In all of the mutants isolated to date, the mutations map at the spe-1 locus on linkage group V. Strains carrying mutations PE4, PE7, and PE85 displayed a small amount of residual ODC activity in extracts. None of them had a temperature-sensitive enzyme. The enzyme of the PE85 mutant had a 25-fold higher Km for ornithine (5mM) than did the enzyme of wild-type or the PE4 mutant (ca. 0.2 mM). The enzyme of this mutant was more stable to heat than was the wild-type enzyme. These characteristics were normal in the mutant carrying allele PE4. The mutant carrying PE85 was able to grow well at 25 degrees C and weakly at 35 degrees C with ornithine supplementation. This mutant and three ODC-less mutants isolated previously displayed a polypeptide corresponding to ODC in Western immunoblots with antibody raised to purified wild-type ODC. We conclude that spe-1 is the structural gene for the ODC.


1987 ◽  
Vol 7 (9) ◽  
pp. 3168-3177
Author(s):  
M G Schechtman

The most distal known gene on Neurospora crassa linkage group VR, his-6, was cloned. A genomic walk resulted in isolation of the telomere at VR. It was obtained from a library in which the endmost nucleotides of the chromosome had not been removed by nuclease treatment before being cloned, and mapping indicates that the entire chromosome end has probably been cloned. Sequences homologous to the terminal 2.5 kilobases of DNA from VR from these Oak Ridge N. crassa strains are found at other sites in the genome. To characterize these sites, I crossed an Oak Ridge-derived his-6 strain with a wild-type strain of different genetic background (Mauriceville) and characterized the hybridization patterns seen in the progeny. It appears that the sequences homologous to the VR terminus are found at genetically different sites in the two parental strains, and no hybridization to the VR telomere from Mauriceville was detected. The other genomic copies identified in the Oak Ridge parent were not telomeres. I suggest that any repeating sequence blocks found immediately adjacent to the VR terminus in Oak Ridge strains must be small and that the repeating element identified in that background may be an N. crassa transposable element integrated near the the chromosome end at VR.


1974 ◽  
Vol 23 (3) ◽  
pp. 335-359 ◽  
Author(s):  
Joan L. Betz ◽  
Jane E. Brown ◽  
Patricia H. Clarke ◽  
Martin Day

SUMMARYMutants ofPseudomonas aeruginosa, which differed in amide growth phenotype from the wild-type strain, were subjected to genetic analysis using the generalized transducing phage F116. The map order of some mutational sites was determined by 3-factor crosses in which a mutation in the linked regulator geneamiRwas used as the outside marker to determine the relative order of mutations in the amidase structural geneamiE. Acetamide-positive transductants were recovered in crosses between amidase-negative strains and strains PhB3(PAC377), V2(PAC353) and V5(PAC356) producing mutant amidases which hydrolyse phenylacetamide and valeramide but not acetamide. Some recombinants carried the mutationamiE16 determining the properties of the mutant B amidase produced by strain B6(PAC351) from which both PhB and V class mutants were derived, while other recombinants produced A amidase determined by the wild-typeamiEgene.


2000 ◽  
Vol 66 (9) ◽  
pp. 3835-3841 ◽  
Author(s):  
Kari Kyl�-Nikkil� ◽  
Mervi Hujanen ◽  
Matti Leisola ◽  
Airi Palva

ABSTRACT Expression of d-(−)-lactate dehydrogenase (d-LDH) and l-(+)-LDH genes (ldhDand ldhL, respectively) and production ofd-(−)- and l-(+)-lactic acid were studied inLactobacillus helveticus CNRZ32. In order to develop a host for production of pure l-(+)-isomer of lactic acid, twoldhD-negative L. helveticus CNRZ32 strains were constructed using gene replacement. One of the strains was constructed by deleting the promoter region of the ldhD gene, and the other was constructed by replacing the structural gene ofldhD with an additional copy of the structural gene (ldhL) of l-LDH of the same species. The resulting strains were designated GRL86 and GRL89, respectively. In strain GRL89, the second copy of the ldhL structural gene was expressed under the ldhD promoter. The twod-LDH-negative strains produced onlyl-(+)-lactic acid in an amount equal to the total lactate produced by the wild type. The maximum l-LDH activity was found to be 53 and 93% higher in GRL86 and GRL89, respectively, than in the wild-type strain. Furthermore, process variables forl-(+)-lactic acid production by GRL89 were optimized using statistical experimental design and response surface methodology. The temperature and pH optima were 41�C and pH 5.9. At low pH, when the growth and lactic acid production are uncoupled, strain GRL89 produced approximately 20% more lactic acid than GRL86.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Kiyoshi Onai ◽  
Hideaki Nakashima

Ten cysteine auxotrophs of Neurospora crassa were examined with regard to the period lengths of their circadian conidiation rhythms. One of the these cysteine auxotrophs, cys-9, showed dramatic changes in the circadian conidiation rhythm. At 10 μm methionine, the cys-9 mutant had a period length that was 5 hr shorter than that of the wild-type strain during the first 3 days after transfer to continuous darkness. At this concentration of methionine, the period length was unstable after the fourth day and varied widely from 11 to 31 hr. In contrast, other cysteine auxotrophs did not show such instability of the period length at any of the concentrations of methionine tested. Furthermore, only the cys-9 mutant exhibited partial loss of the capacity for temperature compensation of the period length. With regard to cold-induced phase-shifting of the circadian conidiation rhythm, the cys-9 mutant was more sensitive than the wild-type strain to low temperature. The cys-9  + gene was cloned and was found to encode NADPH-dependent thioredoxin reductase. These results indicate that mutation of the gene for thioredoxin reductase results in abnormal expression of the circadian conidiation rhythm in N. crassa.


Genetics ◽  
1976 ◽  
Vol 84 (2) ◽  
pp. 183-192
Author(s):  
Robert E Nelson ◽  
John F Lehman ◽  
Robert L Metzenberg

ABSTRACT A mutant of Neurospora crassa with an altered repressible acid phosphatase has been isolated. The enzyme is much more thermolabile than that of wild type, and has an increased Michaelis constant. Tests of allelic interactions (in partial diploids) and in vitro mixing experiments were consistent with the mutation being in the structural gene for the enzyme. This gene, pho-3, was found to be located in the right arm of Linkage Group IV (LG IV). Thus, pho-3 and the structural gene for repressible alkaline phosphatase, pho-2 (LG V), map in separate linkage groups and cannot be part of the same operon. Neither of these structural genes is linked to the known regulatory genes, nuc-1 (LG I), nuc-2 (LG II), and preg (LG II).


Sign in / Sign up

Export Citation Format

Share Document