scholarly journals Metabolic Engineering of Lactobacillus helveticus CNRZ32 for Production of Purel-(+)-Lactic Acid

2000 ◽  
Vol 66 (9) ◽  
pp. 3835-3841 ◽  
Author(s):  
Kari Kyl�-Nikkil� ◽  
Mervi Hujanen ◽  
Matti Leisola ◽  
Airi Palva

ABSTRACT Expression of d-(−)-lactate dehydrogenase (d-LDH) and l-(+)-LDH genes (ldhDand ldhL, respectively) and production ofd-(−)- and l-(+)-lactic acid were studied inLactobacillus helveticus CNRZ32. In order to develop a host for production of pure l-(+)-isomer of lactic acid, twoldhD-negative L. helveticus CNRZ32 strains were constructed using gene replacement. One of the strains was constructed by deleting the promoter region of the ldhD gene, and the other was constructed by replacing the structural gene ofldhD with an additional copy of the structural gene (ldhL) of l-LDH of the same species. The resulting strains were designated GRL86 and GRL89, respectively. In strain GRL89, the second copy of the ldhL structural gene was expressed under the ldhD promoter. The twod-LDH-negative strains produced onlyl-(+)-lactic acid in an amount equal to the total lactate produced by the wild type. The maximum l-LDH activity was found to be 53 and 93% higher in GRL86 and GRL89, respectively, than in the wild-type strain. Furthermore, process variables forl-(+)-lactic acid production by GRL89 were optimized using statistical experimental design and response surface methodology. The temperature and pH optima were 41�C and pH 5.9. At low pH, when the growth and lactic acid production are uncoupled, strain GRL89 produced approximately 20% more lactic acid than GRL86.

2009 ◽  
Vol 75 (9) ◽  
pp. 2991-2995 ◽  
Author(s):  
Sonia Baños ◽  
Rosario Pérez-Redondo ◽  
Bert Koekman ◽  
Paloma Liras

ABSTRACT The Streptomyces clavuligerus ATCC 27064 glycerol cluster gylR-glpF1K1D1 is induced by glycerol but is not affected by glucose. S. clavuligerus growth and clavulanic acid production are stimulated by glycerol, but this does not occur in a glpK1-deleted mutant. Amplification of glpK1D1 results in transformants yielding larger amounts of clavulanic acid in the wild-type strain and in overproducer S. clavuligerus Gap15-7-30 or S. clavuligerus ΔrelA strains.


Sign in / Sign up

Export Citation Format

Share Document