3-D MAPPING OF THE REMNANT SLABS THE “PALEO-PACIFIC PLATE” IN THE LOWER MANTLE UNDER EAST ASIA AND IMPLICATIONS FOR PLATE RECONSTRUCTION OF THE MESOZOIC EAST ASIA

2018 ◽  
Author(s):  
Yiduo Liu ◽  
◽  
John Suppe
2020 ◽  
Author(s):  
Ping Wang ◽  
Hongbo Zheng ◽  
Yongdong Wang ◽  
Xiaochun Wei ◽  
Lingyu Tang ◽  
...  

<p>The evolution of the longest river in Asia, Yangtze, provides a spectacular example to understand the Cenozoic interaction between tectonic, climate and surface processes. The oldest Yangtze deposits in southeast China, characterized by thick sequence of unconsolidated gravel, sand and silty clay, referred as “Yangtze Gravel”, has been recently found in its lower reach and dated back to > 23 Ma, indicating a pre-Miocene establishment of a through-going river. However, the link between river reorganization and tectonic evolution has never been well understood. Far-field effects of the Indian–Eurasia collision are often invoked to explain the widespread East Asia lithospheric deformations and the opening of the marginal, as well as the through-going of the large rivers. However,  some geological and geophysical investigations challenge this model and suggest that the Pacific Plate subduction beneath Eurasia plays an much more active role in East Asia lithospheric deformation during the Cenozoic. Here, we study the sedimentology, chronology and provenance of the Yangtze Gravel based on 17 stratigraphic sections exposed along the Lower Yangtze River. Our results indicate a braided alluvial system (Paleo-Lower Yangtze) established since early Miocene across the Jianghan Basin, North Jiangsu Basin and East China Sea Shelf Basin. Compared with the Early Cenozoic red-colored, halite-bearing lacustrine deposits, our results indicate a larger tectonically controlled shift from rifting to post-rift down-warping across these basins. During Early Cenozoic, the initial subduction of Pacific Plate may contribute to the back-arc extension and affect the continental deep interior of East Asia many thousands of kilometers from the subduction margin. During Oligocene to Miocene, the ongoing subduction of the Pacific plate produced a stagnant slab that may have significantly triggered the post-rift subsidence and the connection of these basins. The deposition of the “Yangtze Gravel” reflect the dynamic response of surface processes to western Pacific subduction in East Asia.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ming Hao ◽  
Yuhang Li ◽  
Wenquan Zhuang

AbstractEast Asia is bounded by the Indian plate to the southwest and the Pacific and Philippine plates to the east, and has undergone complex tectonic evolution since ~55 Ma. In this study, we collect and process three sources of GPS datasets, including GPS observations, GPS positioning time series, and published GPS velocities, to derive unified velocity and strain rate fields for East Asia. We observed southward movement and arc-parallel extension along the Ryukyu Arc and propose that the maximum principal stress axis (striking NEE) in North China could be mainly induced by westward subduction of the Pacific plate and the southward movement of the Ryukyu Arc. The large EW-trending sinistral shear zone that bounds North China has been created by eastward movement of South China to the south and westward subduction of the Pacific plate to the north. GPS velocity profiles and strain rates also demonstrate that crustal deformation in mainland China is controlled by northeastward collision of the Indian plate into Eurasia and westward subduction of the Pacific and Philippine Sea plates beneath Eurasia. In particular, the India-Eurasia continental collision has the most extensive impact, which can reach as far as the southern Lake Baikal. The viscous behavior of the subducting Pacific slab also drives interseismic deformation of North China. The crustal deformation caused by Philippine oceanic subduction is small and is limited to the region between the southeast coast of mainland China and Taiwan island. However, the principal compressional strain around eastern Taiwan is the largest in the region.


2017 ◽  
Author(s):  
Charles Holcombe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document