scholarly journals First-cycle sand supply and the evolution of the eastern Canadian continental margin: Insights from Pb isotopes in the Mesozoic Scotian Basin

Author(s):  
Aoife Blowick ◽  
Georgia Pe-Piper ◽  
David J.W. Piper ◽  
Yuanyuan Zhang ◽  
Shane Tyrrell

Provenance analysis provides a powerful means to understand, connect, and reconstruct source-to-sink systems and Earth surface processes, if reliable toolkits can be developed, refined, and applied. Deciphering sediment routing to the Scotian Basin, offshore eastern Canada, is marred by sedimentary recycling but is critical to understanding the evolution of the Canadian margin in response to the evolving Labrador rift. In this study, Pb isotopes in detrital K-feldspars were fingerprinted in 13 wells across the Scotian Basin to track first-cycle sand supply. Unlike previous approaches, which utilized less labile proxies such as zircon, detrital K-feldspars are unlikely to survive multiple sedimentary cycles. The Pb-isotopic data reveal a dynamic seesaw effect between hinterland sources across the Jurassic-Cretaceous boundary, reflecting the complex interplay between the northward propagation of uplift along the rising Labrador rift flank and the reactivation of fault systems in the lower drainage basin. Pb isotopes in K-feldspar record progressively increasing long-distance supply from eastern Labrador, as early as the Callovian in the central basin, alongside diminishing but persistent local sourcing from adjacent Appalachian terranes. Comparison with more resilient mineral proxies, notably zircon, appears to confirm recycling in the lower drainage basin and highlights the limitations of using a single mineral proxy in isolation. This case study serves as an example of the growing potential of multiproxy provenance toolkits not only to decipher sediment-routing corridors in paleodrainage systems, but to better define and connect the drivers, mechanisms, and spatial and temporal ranges of Earth surface processes and tectonic events.

2017 ◽  
Author(s):  
Katharine W. Huntington ◽  
◽  
Keith Klepeis ◽  
Elizabeth J. Cassel ◽  
Claire A. Currie ◽  
...  

2020 ◽  
Author(s):  
Aoife Blowick ◽  
et al.

S1: Statistical Analysis of Pb isotopes in K-feldspar; S2: Pb isotopic compositions of K-feldspars; S3: Thorogenic Pb Plots.


2006 ◽  
Vol 251 (3-4) ◽  
pp. 334-345 ◽  
Author(s):  
J SCHAEFER ◽  
T FAESTERMANN ◽  
G HERZOG ◽  
K KNIE ◽  
G KORSCHINEK ◽  
...  

2018 ◽  
Vol 75 (3) ◽  
pp. 488-496 ◽  
Author(s):  
Graham D. Raby ◽  
Christopher S. Vandergoot ◽  
Todd A. Hayden ◽  
Matthew D. Faust ◽  
Richard T. Kraus ◽  
...  

Thermoregulation is presumed to be a widespread determinant of behaviour in fishes, but has not often been investigated as a mechanism shaping long-distance migrations. We used acoustic telemetry and animal-borne thermal loggers to test the hypothesis that seasonal migration in adult walleye (Sander vitreus) in Lake Erie is size- and (or) sex-specific and related to behavioural thermoregulation. Female walleye migrated out of the warm, shallow western basin earlier than did males and were 1.8 times more likely to be detected on acoustic receivers in the deeper and cooler eastern basin. The few fish that remained in the western basin were restricted to a smaller range of higher temperatures (≥20 °C) than those that migrated to the central and eastern basins (∼16–21 °C). However, temperature records from walleye in the central basin were nearly indistinguishable from those in the eastern basin, suggesting thermal preferences alone could not explain migration to the eastern basin. As such, our effort to understand the mechanisms that cause migratory behaviours has generated mixed evidence on the role of temperature and that factors like foraging opportunities may have synergistic roles in the migration.


Sign in / Sign up

Export Citation Format

Share Document