central basin
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 82)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Vol 41 (1) ◽  
pp. 34-39
Author(s):  
Vincent Durussel ◽  
Dongren Bai ◽  
Amin Baharvand Ahmadi ◽  
Scott Downie ◽  
Keith Millis

The depth of penetration and multidimensional characteristics of seismic waves make them an essential tool for subsurface exploration. However, their band-limited nature can make it difficult to integrate them with other types of ground measurements. Consequently, far offsets and very low-frequency components are key factors in maximizing the information jointly inverted from all recorded data. This explains why extending seismic bandwidth and available offsets has become a major industry focus. Although this requirement generally increases the complexity of acquisition and has an impact on its cost, improvements have been clearly and widely demonstrated on marine data. Onshore seismic data have generally followed the same trend but face different challenges, making it more difficult to maximize the benefits, especially for full-waveform inversion (FWI). This paper describes a new dense survey acquired in 2020 in the Permian Basin and aims to objectively assess the quality and benefits brought by a richer low end of the spectrum and far offsets. For this purpose, we considered several aspects, from acquisition design and field data to FWI imaging and quantitative interpretation.


Author(s):  
Irene Garousi-Nejad ◽  
David Tarboton

This study compares the U.S. National Water Model (NWM) reanalysis snow outputs to observed snow water equivalent (SWE) and snow-covered area fraction (SCAF) at SNOTEL sites across the Western U.S. SWE was obtained from SNOTEL sites, while SCAF was obtained from MODIS observations at a nominal 500 m grid scale. Retrospective NWM results were at a 1000 m grid scale. We compared results for SNOTEL sites to gridded NWM and MODIS outputs for the grid cells encompassing each SNOTEL site. Differences between modeled and observed SWE were attributed to both model errors, as well as errors in inputs, notably precipitation and temperature. The NWM generally under-predicted SWE, partly due to precipitation input differences. There was also a slight general bias for model input temperature to be cooler than observed, counter to the direction expected to lead to under-modeling of SWE. There was also under-modeling of SWE for a subset of sites where precipitation inputs were good. Furthermore, the NWM generally tends to melt snow early. There was considerable variability between modeled and observed SCAF as well as the binary comparison of snow cover presence that hampered useful interpretation of SCAF comparisons. This is in part due to the shortcomings associated with both model SCAF parameterization and MODIS observations, particularly in vegetated regions. However, when SCAF was aggregated across all sites and years, modeled SCAF tended to be more than observed using MODIS. These differences are regional with generally better SWE and SCAF results in the Central Basin and Range and differences tending to become larger the further away regions are from this region. These findings identify areas where predictions from the NWM involving snow may be better or worse, and suggest opportunities for research directed towards model improvements.


2021 ◽  
Vol 62 (12) ◽  
pp. 1385-1400
Author(s):  
G.I. Mishukova ◽  
A.V. Yatsuk ◽  
R.B. Shakirov ◽  
N.S. Syrbu ◽  
M.G. Valitov ◽  
...  

Abstract —We present results of an integrated research into the spatial distribution of methane in the area of the northern closure of the Central Basin of the Sea of Japan and in the southern part of the Tatar Trough. Methane emissions have been revealed in the study area. The methane fluxes are distributed unevenly within the area (1 to 23 mol/(km2·day)). The discrete high-frequency measurements and calculation of methane fluxes at the water–atmosphere interface, combined with the study of the content of natural gases and microbiologic parameters in sediment cores, allow us to explain the formation of local methane emission zones in the water area. Despite the great sea depths, there are sources and fluid-conducting zones that determine methane concentrations (exceeding the equilibrium ones) and high methane emissions from the water area. The data obtained provide new information and suggest the presence of deep gas sources, which determine gas dispersion in the bottom sediments, the methane content in the surface water layer, and the distribution of methane fluxes at the water–atmosphere interface in the study area. This study is part of the integrated program of geological and geophysical expeditionary research performed by V.I. Il’ichev Pacific Oceanological Institute (Vladivostok) in the northern part of the Sea of Japan.


2021 ◽  
Author(s):  
Pierre Henry ◽  
Sinan Özeren ◽  
Nurettin Yakupoğlu ◽  
Ziyadin Çakir ◽  
Emmanuel de Saint-Léger ◽  
...  

Abstract. Earthquake-induced submarine slope destabilization is known to cause debris flows and turbidity currents, but the hydrodynamic processes associated with these events remain poorly understood. Records are scarce and this notably limits our ability to interpret marine paleoseismological sedimentary records. An instrumented frame comprising a pressure recorder and a Doppler recording current meter deployed at the seafloor in the Sea of Marmara Central Basin recorded consequences of a MW = 5.8 earthquake occurring Sept 26, 2019 and of a Mw = 4.7 foreshock two days before. The smaller event caused sediment resuspension but no strong current. The larger event triggered a complex response involving a mud flow and turbidity currents with variable velocities and orientations, which may result from multiple slope failures. A long delay of 10 hours is observed between the earthquake and the passing of the strongest turbidity current. The distance travelled by the sediment particles during the event is estimated to several kilometres, which could account for a local deposit on a sediment fan at the outlet of a canyon, but not for the covering of the whole basin floor. We show that after a moderate earthquake, delayed turbidity current initiation may occur, possibly by ignition of a cloud of resuspended sediment. Some caution is thus required when tying seismoturbidites with earthquakes of historical importance. However, the horizontal extent of the deposits should remain indicative of the size of the earthquake.


The Holocene ◽  
2021 ◽  
pp. 095968362110604
Author(s):  
David M Kennedy ◽  
Beth V Risdon ◽  
Josephine LD Woods

The sedimentary sequences found within estuaries in the north west Nelson region of central New Zealand are investigated in order to quantify the timing of the end of the Post Glacial Marine Transgression. This region has been identified as being relatively stable in terms of vertical tectonic movement during the Holocene, but is yet to yield any reconstructions of eustatic sea level. In this study, we investigate the Holocene infill of a barrier estuary (Parapara Inlet) through sedimentological analysis and radiocarbon dating of 18 vibracores up to 4.2 m in length. It is found that the estuary infilled through a combination of lateral flood tide and fluvial delta progradation as well as vertical central basin infill. The central basin infilled at a consistent rate of 0.4 mm/year in both the mid (7.0–6.0 ka) and late-Holocene (2.5–1.5 ka). By the time of early human (Maori) settlement (c. 1 ka), the estuary surface was at low intertidal elevations with sediment being transported from the fluvial to tidal delta. A discernible change in sedimentation rates could not be associated with Maori settlement; however, infill rates increased to at least 12.5 mm/year in the past 150 years due hydraulic sluicing associated with mining. The sedimentary history of Parapara Inlet is compared to nearby Whanganui Inlet, d’Urville Island and Nelson to establish the character of regional Holocene sea level movement. It is found that relative sea level reached modern elevations between 8 and 7 ka in the region. The similarity between sea level curves for the end of the post glacial marine transgression (PMT) to other tectonically stable sites in northern New Zealand suggests that this curve can now be considered a true eustatic signal for the New Zealand archipelago.


2021 ◽  
Author(s):  
Miles McCoy-Sulentic ◽  
Diane Menuz ◽  
Rebecca Lee

Wetlands in the arid Central Basin and Range (“Central Basin”) ecoregion of Utah are scarce but provide important functions including critical habitat for wildlife including Species of Greatest Conservation Need and migratory birds, water quality improvement, and recreational and aesthetic values. The Utah Geological Survey (UGS) conducted a study in 2019 and 2020 to better understand the location, type, condition, and potential function of wetlands in the ecoregion. This study focused on areas in the Great Salt Lake and Escalante Desert-Sevier Lake (“Sevier Basin”) HUC6 watersheds within the Central Basin to complement previous work by the UGS that focused on other watersheds in the ecoregion.


Geosphere ◽  
2021 ◽  
Author(s):  
Nikolas Midttun ◽  
Nathan A. Niemi ◽  
Bianca Gallina

Geologic mapping, measured sections, and geochronologic data elucidate the tectono-stratigraphic development of the Titus Canyon extensional basin in Death Valley, California, and provide new constraints on the age of the Titus Canyon Formation, one of the earliest syn-extensional deposits in the central Basin and Range. Detrital zircon maximum depositional ages (MDAs) and compiled 40Ar/39Ar ages indicate that the Titus Canyon Formation spans 40(?)–30 Ma, consistent with an inferred Duchesnean age for a unique assemblage of mammalian fossils in the lower part of the formation. The Titus Canyon Formation preserves a shift in depositional environment from fluvial to lacustrine at ca. 35 Ma, which along with a change in detrital zircon provenance may reflect both the onset of local extensional tectonism and climatic changes at the Eocene–Oligocene boundary. Our data establish the Titus Canyon basin as the southernmost basin in a system of late Eocene extensional basins that formed along the axis of the Sevier orogenic belt. The distribution of lacustrine deposits in these Eocene basins defines the extent of a low-relief orogenic plateau (Nevadaplano) that occupied eastern Nevada at least through Eocene time. As such, the age and character of Titus Canyon Formation implies that the Nevadaplano extended into the central Basin and Range, ~200 km farther south than previously recognized. Development of the Titus Canyon extensional basin precedes local Farallon slab removal by ca. 20 Ma, implying that other mechanisms, such as plate boundary stress changes due to decreased convergence rates in Eocene time, are a more likely trigger for early extension in the central Basin and Range.


2021 ◽  
Vol 57 (10) ◽  
Author(s):  
Wenzhao Xu ◽  
Paris D. Collingsworth ◽  
Richard Kraus ◽  
Barbara Minsker

Author(s):  
Yuan-Zheng Lu ◽  
Xian-Rong Cen ◽  
Shuang-Xi Guo ◽  
Ling Qu ◽  
Peng-Qi Huang ◽  
...  

AbstractThe nominal spatial distribution of diapycnal mixing in the South China Sea (SCS) is obtained with Thorpe-scale analysis from 2004 to 2020. The inferred dissipation rate ε and diapycnal diffusivity Kz between 100 and 1500 m indicated that the strongest mixing occurred in the Luzon Strait and Dongsha Plateau regions, with ε ~ 3.0 × 10-8 W/kg (εmax = 5.3 × 10-6 W/kg) and Kz ~ 3.5 × 10-4 m2/s (Kz max = 4.2 = 10-2 m2/s). The weakest mixing occurred in the thermocline of the central basin, with ε ~ 6.2 × 10-10 W/kg and Kz ~ 3.7 × 10-6 m2/s. The ε and Kz in the continental slope indicated that the mixing in the northern part [O(10-8) W/kg, O(10-4) m2/s] was comparatively stronger than that in the Xisha and Nansha regions [O(10-9) W/kg, O(10-5) m2/s]. The Kz in the continental slope region (200–2000 m) decayed at a closed rate from the ocean bottom to the main thermocline when the measured depth D was normalized by the ocean depth H as D/H, whether in the shallow or deep oceans. The diapycnal diffusivity was parameterized as Kz = 3.3 × 10−4 (1 + )−2 − 6.0 × 10−6 m2/s. The vertically integrated energy dissipation was nominally as 15.8 mW/m2 for all data and 25.6 mW/m2 for data at stations H < 2000 m. This was about one order higher than that in the open oceans (3.0–3.3 mW/m2), which confirmed the active mixing state in the SCS.


Sign in / Sign up

Export Citation Format

Share Document