thermal preferences
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 34)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Theja Abayarathna ◽  
Jonathan K. Webb

In many lizards, a mother’s choice of nest site can influence the thermal and hydric regimes experienced by developing embryos, which in turn can influence key traits putatively linked to fitness, such as body size, learning ability, and locomotor performance. Future increases in nest temperatures predicted under climate warming could potentially influence hatchling traits in many reptiles. In this study, we investigated whether future nest temperatures affected the thermal preferences of hatchling velvet geckos, Amalosia lesueurii. We incubated eggs under two fluctuating temperature treatments; the warm treatment mimicked temperatures of currently used communal nests (mean = 24.3°C, range 18.4–31.1°C), while the hot treatment (mean = 28.9°C, range 20.7–38.1°C) mimicked potential temperatures likely to occur during hot summers. We placed hatchlings inside a thermal gradient and measured their preferred body temperatures (Tbs) after they had access to food, and after they had fasted for 5 days. We found that hatchling feeding status significantly affected their preferred Tbs. Hatchlings maintained higher Tbs after feeding (mean = 30.6°C, interquartile range = 29.6–32.0°C) than when they had fasted for 5 d (mean = 25.8°C, interquartile range = 24.7–26.9°C). Surprisingly, we found that incubation temperatures did not influence the thermal preferences of hatchling velvet geckos. Hence, predicting how future changes in nest temperatures will affect reptiles will require a better understanding of how incubation and post-hatchling environments shape hatchling phenotypes.


Author(s):  
Danilo Giacometti ◽  
Katharine Yagi ◽  
Curtis R Abney ◽  
Matthew P Jung ◽  
Glenn Jeffery Tattersall

Thermal biology research compares field with laboratory data to elucidate the evolution of temperature-sensitive traits in ectotherms. The hidden challenge of many of these studies is discerning whether animals actively thermoregulate, since motivation is not typically assessed. By studying behaviours involved in thermoregulation, we can better understand the mechanisms behind body temperature control. Using an integrative approach, we assess thermoregulatory and thermotactic behaviours of two sympatric snake species with contrasting life histories, the generalist Thamnophis sirtalis sirtalis (Linnaeus, 1758) and the semi-fossorial Storeria occipitomaculata occipitomaculata (Storer, 1839). We expected that thermoregulatory behaviours would be optimised based on life history, in that T. s. sirtalis would show higher evidence for thermally-oriented behaviours than S. o. occipitomaculata due to its active nature. Thamnophis s. sirtalis actively thermoregulated, had higher thermal preferences (29.4 ± 2.5 vs. 25.3 ± 3.6°C), and was more active than S. o. occipitomaculata, which showed relatively low evidence for thermotaxis. Our results build on the notion that evaluating movement patterns and rostral orientation towards a heat-source can help ascertain whether animals make thermally-motivated choices. Our data give insight into the thermoregulatory strategies used by snakes with different life histories, and maximise the information provided by behavioural thermoregulation experiments.


Author(s):  
Lindsey A Robbins ◽  
Angela R Green-Miller ◽  
Donald C Lay Jr ◽  
Allan P Schinckel ◽  
Jay S Johnson ◽  
...  

Abstract The metabolic heat production of modern pigs has increased by an average of 16%, compared to sows of thirty years ago. Therefore, it is likely that temperature recommendations require updating to meet the needs of modern pigs. The objective of this study was to evaluate whether different reproductive stages of sows altered thermal preference and if current recommendations required updating. Twenty multi-parous sows (3.4 ± 1.2 parity) in different reproductive stages (non-pregnant: n=7; mid-gestation: 58.5 ± 5.68 d, n=6; and late-gestation: 104.7 ± 2.8 d, n=7) were tested. Thermal preference was individually tested and sows could freely choose a temperature, using a thermal gradient between 10.4 to 30.5°C. Sows were given 24 h to acclimate to the thermal apparatus. Before testing began, sows were given daily feed allotment and returned to the apparatus. Video from the 24 h test period was used to record sow behavior (time spent inactive), posture (upright, sternal and lateral lying), and location using instantaneous scan samples every 15 min. Data were analyzed using PROC MIXED in SAS 9.4. A cubic regression model was used to calculate the sow’s most preferred temperature based on the location, or temperature, in which they spent the most time. The preference range was calculated using peak temperature preference ±SE for each sow. The reproductive stage altered where sows spent their time within the thermal gradient (P < 0.01). Late-gestation sows preferred cooler temperatures (14.0°C) than mid-gestation (14.8°C; P < 0.01) and non-pregnant sows (14.8°C; P < 0.01). In summary, sow thermal preferences were within the lower half of the current recommended range (10 to 25°C). This indicates that temperatures at the higher end of the recommended range could be uncomfortable to sows and that the thermal comfort zone of sows may be narrower than recommendations indicate.


Author(s):  
Nicholas B. Sakich ◽  
Glenn J. Tattersall

Whether scales reduce cutaneous evaporative water loss in lepidosaur reptiles (Superorder Lepidosauria) such as lizards and snakes has been a contentious issue for nearly half a century. Furthermore, while many studies have looked at whether dehydration affects thermal preference in lepidosaurs, far fewer have examined whether normally hydrated lepidosaurs can assess their instantaneous rate of evaporative water loss and adjust their thermal preference to compensate in an adaptive manner. We tested both of these hypotheses using three captive-bred phenotypes of bearded dragon (Pogona vitticeps) sourced from the pet trade: ‘Wild Types’ with normal scalation, ‘Leatherbacks’ exhibiting scales of reduced prominence, and scaleless bearded dragons referred to as ‘Silkbacks’. Silkbacks on average lost water evaporatively at about twice the rate that Wild Types did. Leatherbacks on average were closer in their rates of evaporative water loss to Silkbacks than they were to Wild Types. Additionally, very small (at most ∼1°C) differences in thermal preference existed between the three phenotypes that were not statistically significant. This suggests a lack of plasticity in thermal preference in response to an increase in rate of evaporative water loss, and may be reflective of a thermal ‘strategy’ as employed by thermoregulating bearded dragons that prioritises immediate thermal benefits over the threat of future dehydration. The results of this study bolster an often-discounted hypothesis regarding the present adaptive function of scales and have implications for the applied fields of animal welfare and conservation.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 200
Author(s):  
Eric J. Gangloff ◽  
Sierra Spears ◽  
Laura Kouyoumdjian ◽  
Ciara Pettit ◽  
Fabien Aubret

Ectothermic animals living at high elevation often face interacting challenges, including temperature extremes, intense radiation, and hypoxia. While high-elevation specialists have developed strategies to withstand these constraints, the factors preventing downslope migration are not always well understood. As mean temperatures continue to rise and climate patterns become more extreme, such translocation may be a viable conservation strategy for some populations or species, yet the effects of novel conditions, such as relative hyperoxia, have not been well characterised. Our study examines the effect of downslope translocation on ectothermic thermal physiology and performance in Pyrenean rock lizards (Iberolacerta bonnali) from high elevation (2254 m above sea level). Specifically, we tested whether models of organismal performance developed from low-elevation species facing oxygen restriction (e.g., hierarchical mechanisms of thermal limitation hypothesis) can be applied to the opposite scenario, when high-elevation organisms face hyperoxia. Lizards were split into two treatment groups: one group was maintained at a high elevation (2877 m ASL) and the other group was transplanted to low elevation (432 m ASL). In support of hyperoxia representing a constraint, we found that lizards transplanted to the novel oxygen environment of low elevation exhibited decreased thermal preferences and that the thermal performance curve for sprint speed shifted, resulting in lower performance at high body temperatures. While the effects of hypoxia on thermal physiology are well-explored, few studies have examined the effects of hyperoxia in an ecological context. Our study suggests that high-elevation specialists may be hindered in such novel oxygen environments and thus constrained in their capacity for downslope migration.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-23
Author(s):  
Indah Sari Zulfiana

To get good quality learning, a comfortable study room is needed both visually, audally and thermally. Thermal comfort is greatly influenced by the climatic conditions of a region. In areas with high daily air temperature, high humidity and low air velocity, it is difficult to produce thermal comfort with natural air conditioning. Jayapura City is one of the cities in Indonesia with daily air temperature and high humidity and low air velocity. Therefore, adaptive processes are needed to achieve thermal comfort in spaces, including study rooms. Each human's adaptive thermal comfort is different according to local climatic conditions. The purpose of this study was to determine the adaptive thermal comfort of students in naturally ventilated classrooms at the Jayapura University of Science and Technology (USTJ) in the city of Jayapura, Papua, namely students 'neutrality, acceptance and thermal preferences, as well as students' adaptive behavior in achieving thermal comfort. This research was conducted in one of USTJ's classrooms in Jayapura, Papua. Four environmental parameters were measured, namely temperature, humidity, wind speed, and mean radiant temperature (MRT). The data were obtained through filling out a questionnaire to 100 USTJ students during the space measurement. Thermal neutrality data were analyzed using regression analysis using SPSS software, while thermal acceptance and preference and adaptive behavior were analyzed based on the results of the questionnaire answers. The results showed that USTJ students' thermal neutrality was at 29.°C Ta or 29.55°C Top. all students can accept the thermal conditions of the room, but 59% of students choose to want the room to be cooler due to their thermal preferences. The adaptive behavior that is carried out is turning on the fan, picking up objects to be used as a fan, leaving the room and drinking more often.


Apidologie ◽  
2021 ◽  
Author(s):  
Monika Ostap-Chec ◽  
Justyna Kierat ◽  
Karolina Kuszewska ◽  
Michal Woyciechowski

AbstractEctotherms usually require a narrow range of thermal conditions for development; thus, parental selection of oviposition sites is crucial. In a field experiment, we investigated female solitary red mason bee (Osmia bicornis) preferences for potential nest site temperatures and their effects on offspring development. The results showed that bees detected and avoided nest sites with high temperatures (28°C) and often chose cooler (24°C) or ambient temperatures (average 18–20°C). This is a protective behaviour because offspring survival decreases with increasing nest temperature, mostly due to mortality at the egg stage. Elevated temperatures also led to weight loss in adult bees. However, hot nest temperatures appeared to deter adults or kill parasite larvae, as the highest numbers of parasites were observed in unheated nests. We concluded that choosing the proper temperature for nests is an important element in bee life strategies, especially in warming environments.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 310
Author(s):  
Dariusz Krzysztof Małek ◽  
Marcin Czarnoleski

The thermal environment influences insect performance, but the factors affecting insect thermal preferences are rarely studied. We studied Callosobruchus maculatus seed beetles and hypothesized that thermal preferences are influenced by water balance, with individuals with limited water reserves preferring cooler habitats to reduce evaporative water loss. Adult C. maculatus, in their flightless morph, do not consume food or water, but a copulating male provides a female with a nuptial gift of ejaculate containing nutrients and water. We hypothesized that gift recipients would prefer warmer habitats than gift donors and that both sexes would plastically adjust their thermal preferences according to the size of the transferred gift. We measured the thermal preference in each sex in individuals that were mated once or were unmated. In the mated group, we measured the sizes of the nuptial gifts and calculated proportional body mass changes in each mate during copulation. Supporting the role of water balance in thermal preference, females preferred warmer habitats than males. Nevertheless, thermal preferences in either sex were not affected by mating status or gift size. It is likely that high rates of mating and gift transfers in C. maculatus living under natural conditions promoted the evolution of constitutive sex-dependent thermal preferences.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247514
Author(s):  
Jean-François Le Galliard ◽  
David Rozen-Rechels ◽  
Anjélica Lecomte ◽  
Clémence Demay ◽  
Andréaz Dupoué ◽  
...  

Thermoregulation is critical for ectotherms as it allows them to maintain their body temperature close to an optimum for ecological performance. Thermoregulation includes a range of behaviors that aim at regulating body temperature within a range centered around the thermal preference. Thermal preference is typically measured in a thermal gradient in fully-hydrated and post-absorptive animals. Short-term effects of the hydric environment on thermal preferences in such set-ups have been rarely quantified in dry-skinned ectotherms, despite accumulating evidence that dehydration might trade-off with behavioral thermoregulation. Using experiments performed under controlled conditions in climatic chambers, we demonstrate that thermal preferences of a ground-dwelling, actively foraging lizard (Zootoca vivipara) are weakly decreased by a daily restriction in free-standing water availability (less than 0.5°C contrast). The influence of air humidity during the day on thermal preferences depends on time of the day and sex of the lizard, and is generally weaker than those of of free-standing water (less than 1°C contrast). This shows that short-term dehydration can influence, albeit weakly, thermal preferences under some circumstances in this species. Environmental humidity conditions are important methodological factors to consider in the analysis of thermal preferences.


Sign in / Sign up

Export Citation Format

Share Document