Proglacial lakes and the southern margin of the Laurentide Ice Sheet

Author(s):  
James T. Teller
2005 ◽  
Vol 18 (16) ◽  
pp. 3317-3338 ◽  
Author(s):  
David H. Bromwich ◽  
E. Richard Toracinta ◽  
Robert J. Oglesby ◽  
James L. Fastook ◽  
Terence J. Hughes

Abstract Regional climate simulations are conducted using the Polar fifth-generation Pennsylvania State University (PSU)–NCAR Mesoscale Model (MM5) with a 60-km horizontal resolution domain over North America to explore the summer climate of the Last Glacial Maximum (LGM: 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. The simulated LGM summer climate is characterized by a pronounced low-level thermal gradient along the southern margin of the LIS resulting from the juxtaposition of the cold ice sheet and adjacent warm ice-free land surface. This sharp thermal gradient anchors the midtropospheric jet stream and facilitates the development of synoptic cyclones that track over the ice sheet, some of which produce copious liquid precipitation along and south of the LIS terminus. Precipitation on the southern margin is orographically enhanced as moist southerly low-level flow (resembling a contemporary Great Plains low-level jet configuration) in advance of the cyclone is drawn up the ice sheet slope. Composites of wet and dry periods on the LIS southern margin illustrate two distinctly different atmospheric flow regimes. Given the episodic nature of the summer rain events, it may be possible to reconcile the model depiction of wet conditions on the LIS southern margin during the LGM summer with the widely accepted interpretation of aridity across the Great Plains based on geological proxy evidence.


2002 ◽  
Vol 17 (8) ◽  
pp. 773-780 ◽  
Author(s):  
Linda Heusser ◽  
Terryanne Maenza-Gmelch ◽  
Thomas Lowell ◽  
Rebecca Hinnefeld

2020 ◽  
Author(s):  
Thomas V. Lowell ◽  
◽  
Henry Loope ◽  
B. Brandon Curry ◽  
Stephanie L. Heath ◽  
...  

2005 ◽  
Vol 40 ◽  
pp. 219-224 ◽  
Author(s):  
Andreas Bauder ◽  
David M. Mickelson ◽  
Shawn J. Marshall

AbstractSub- and proglacial bed conditions influence advance and retreat of an ice sheet. The existence and distribution of frozen ground is of major importance for better understanding of ice-flow dynamics and landform formation. The southern margin of the Laurentide ice sheet (LIS) was dominated by the presence of relatively thin ice lobes that seem to have been very sensitive to external and internal physical conditions. Their extent and dynamics were highly influenced by the interaction of subglacial and proglacial conditions. A three-dimensional thermomechanical ice-sheet model was coupled with a model for the thermal regime in the upper Earth crust. The model has been applied to the LIS in order to investigate the spatial distribution of thermal conditions at the bed. The evolution of the whole LIS was modeled for the last glacial cycle, with primary attention on correct reconstruction of the southern margin. Our results show extensive temporal and spatial frozen ground conditions. Only a slow degradation of permafrost under the ice was found. We conclude that there are significant interactions between the ice sheet and the underlying frozen ground and that these influence both ice dynamics and landform development.


2020 ◽  
Author(s):  
Sebastian Hinck ◽  
Evan J. Gowan ◽  
Xu Zhang ◽  
Gerrit Lohmann

Abstract. Geological records show that vast proglacial lakes existed along the land terminating margins of palaeo ice sheets in Europe and North America. Proglacial lakes impact ice sheet dynamics by imposing marine-like boundary conditions at the ice margin. These lacustrine boundary conditions include changes in the ice sheet’s geometry, stress balance and frontal ablation and therefore affect the entire ice sheet’s mass balance. This interaction, however, has not been rigorously implemented in ice sheet models. In this study, the implementation of an adaptive lake boundary into the Parallel Ice Sheet Model (PISM) is described and applied to the glacial retreat of the Laurentide Ice Sheet (LIS). The results show that the presence of proglacial lakes locally enhances the ice flow. Along the continental ice margin, ice streams and ice lobes can be observed. Lacustrine terminating ice streams cause immense thinning of the ice sheet’s interior and thus play a significant role in the demise of the LIS. Due to the presence of lakes, a process similar to the marine ice sheet instability causes the collapse of the ice saddle over Hudson Bay, which blocked drainage via the Hudson Strait. In control experiments without a lake model, Hudson Bay is still glaciated at the end of the simulation. Future studies should target the development of parametrizations that better describe the glacial-lacustrine interactions.


1990 ◽  
Vol 14 ◽  
pp. 172-175 ◽  
Author(s):  
Thomas V. Lowell ◽  
Robert Stuckenrath

Ice-sheet advance and retreat chronologies reflect climatic change in a manner that is difficult to decipher. Especially difficult is the placement of records into a chronologic sequence. Multiple age estimates obtained from three stratigraphic positions at a site in Ohio show that organics within deposits of the Miami sublobe, along the southern margin of the Laurentide ice sheet, may be up to 3000 years older than the age of the maximum Late Wisconsin extension of that sublobe. In addition, recent studies on organic accumulations above glacial drift provide bracketing ages for ice recession. When the existing radiometric ages for the Miami sublobe are interpreted with these new radiometric constraints, several fluctuations suggested by prior workers are unsupported. A simpler chronology for the Miami sublobe suggests that in late Wisconsin time the southern margin of the Laurentide ice sheet advanced through Ohio about 22 ka to its maximum extent at 19.7 and remained near there until 15 ka. This is in agreement with newly-refined stratigraphic histories of other Laurentide lobes.


1990 ◽  
Vol 14 ◽  
pp. 172-175 ◽  
Author(s):  
Thomas V. Lowell ◽  
Robert Stuckenrath

Ice-sheet advance and retreat chronologies reflect climatic change in a manner that is difficult to decipher. Especially difficult is the placement of records into a chronologic sequence. Multiple age estimates obtained from three stratigraphic positions at a site in Ohio show that organics within deposits of the Miami sublobe, along the southern margin of the Laurentide ice sheet, may be up to 3000 years older than the age of the maximum Late Wisconsin extension of that sublobe. In addition, recent studies on organic accumulations above glacial drift provide bracketing ages for ice recession. When the existing radiometric ages for the Miami sublobe are interpreted with these new radiometric constraints, several fluctuations suggested by prior workers are unsupported. A simpler chronology for the Miami sublobe suggests that in late Wisconsin time the southern margin of the Laurentide ice sheet advanced through Ohio about 22 ka to its maximum extent at 19.7 and remained near there until 15 ka. This is in agreement with newly-refined stratigraphic histories of other Laurentide lobes.


Sign in / Sign up

Export Citation Format

Share Document