proglacial lakes
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 38)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 13 (18) ◽  
pp. 3614
Author(s):  
Yan Zhong ◽  
Qiao Liu ◽  
Liladhar Sapkota ◽  
Yunyi Luo ◽  
Han Wang ◽  
...  

Climate warming and concomitant glacier recession in the High Mountain Asia (HMA) have led to widespread development and expansion of glacial lakes, which reserved the freshwater resource, but also may increase risks of glacial lake outburst floods (GLOFs) or debris floods. Using 46 moderate- and high-resolution satellite images, including declassified Keyhole and Landsat missions between 1964 and 2020, we provide a comprehensive area mapping of glaciers and glacial lakes in the Tama Koshi (Rongxer) basin, a highly glacierized China-Nepal transnational catchment in the central Himalayas with high potential risks of glacier-related hazards. Results show that the 329.2 ± 1.9 km2 total area of 271 glaciers in the region has decreased by 26.2 ± 3.2 km2 in the past 56 years. During 2000–2016, remarkable ice mass loss caused the mean glacier surface elevation to decrease with a rate of −0.63 m a−1, and the mean glacier surface velocity slowed by ~25% between 1999 and 2015. The total area of glacial lakes increased by 9.2 ± 0.4 km2 (~180%) from 5.1 ± 0.1 km2 in 1964 to 14.4 ± 0.3 km2 in 2020, while ice-contacted proglacial lakes have a much higher expansion rate (~204%). Large-scale glacial lakes are developed preferentially and experienced rapid expansion on the east side of the basin, suggesting that in addition to climate warming, the glacial geomorphological characters (aspect and slope) are also key controlling factors of the lake growing process. We hypothesize that lake expansion will continue in some cases until critical local topography (i.e., steepening icefall) is reached, but the lake number may not necessarily increase. Further monitoring should be focused on eight rapidly expanding proglacial lakes due to their high potential risks of failure and relatively high lake volumes.


2021 ◽  
Vol 13 (15) ◽  
pp. 2987
Author(s):  
Adrian Dye ◽  
Robert Bryant ◽  
Emma Dodd ◽  
Fran Falcini ◽  
David M. Rippin

Despite an increase in heatwaves and rising air temperatures in the Arctic, little research has been conducted into the temperatures of proglacial lakes in the region. An assumption persists that they are cold and uniformly feature a temperature of 1 °C. This is important to test, given the rising air temperatures in the region (reported in this study) and potential to increase water temperatures, thus increasing subaqueous melting and the retreat of glacier termini from where they are in contact with lakes. Through analysis of ASTER surface temperature product data, we report warm (>4 °C) proglacial lake surface water temperatures (LSWT) for both ice-contact and non-ice-contact lakes, as well as substantial spatial heterogeneity. We present in situ validation data (from problematic maritime areas) and a workflow that facilitates the extraction of robust LSWT data from the high-resolution (90 m) ASTER surface temperature product (AST08). This enables spatial patterns to be analysed in conjunction with surrounding thermal influences, such as parent glaciers and topographies. This workflow can be utilised for the analysis of the LSWT data of other small lakes and crucially allows high spatial resolution study of how they have responded to changes in climate. Further study of the LSWT is essential in the Arctic given the amplification of climate change across the region.


2021 ◽  
Vol 15 (7) ◽  
pp. 3255-3278
Author(s):  
Hannah R. Field ◽  
William H. Armstrong ◽  
Matthias Huss

Abstract. Lakes in contact with glacier margins can impact glacier evolution as well as the downstream biophysical systems, flood hazard, and water resources. Recent work suggests positive feedbacks between glacier wastage and ice-marginal lake evolution, although precise physical controls are not well understood. Here, we quantify ice-marginal lake area change in understudied northwestern North America from 1984–2018 and investigate climatic, topographic, and glaciological influences on lake area change. We delineate time series of sampled lake perimeters (n=107 lakes) and find that regional lake area has increased 58 % in aggregate, with individual proglacial lakes growing by 1.28 km2 (125 %) and ice-dammed lakes shrinking by 0.04 km2 (−15 %) on average. A statistical investigation of climate reanalysis data suggests that changes in summer temperature and winter precipitation exert minimal direct influence on lake area change. Utilizing existing datasets of observed and modeled glacial characteristics, we find that large, wide glaciers with thick lake-adjacent ice are associated with the fastest rate of lake area change, particularly where they have been undergoing rapid mass loss in recent times. We observe a dichotomy in which large, low-elevation coastal proglacial lakes have changed most in absolute terms, while small, interior lakes at high elevation have changed most in relative terms. Generally, the fastest-changing lakes have not experienced the most dramatic temperature or precipitation change, nor are they associated with the highest rates of glacier mass loss. Our work suggests that, while climatic and glaciological factors must play some role in determining lake area change, the influence of a lake's specific geometry and topographic setting overrides these external controls.


2021 ◽  
Vol 48 (9) ◽  
Author(s):  
Aurélien Quiquet ◽  
Christophe Dumas ◽  
Didier Paillard ◽  
Gilles Ramstein ◽  
Catherine Ritz ◽  
...  
Keyword(s):  

JOKULL ◽  
2021 ◽  
Vol 70 ◽  
pp. 111-118
Author(s):  
Hrafnhildur Hannesdottir

The Icelandic Glaciological Society received reports on approximately 50 measurements sites of glacier front variations in the autumn of 2019. Glacier retreat was observed at 80% of survey sites whereas advances where reported from 4 sites. The warm summer led to fewer snow-covered glacier margins, and more successful surveys. As in recent years the proglacial lakes make terminus measurements more difficult, although the laser rangefinder works well.


2021 ◽  
Author(s):  
Benjamin Boatwright ◽  
James Head ◽  
Ashley Palumbo

<p>Most Noachian-aged craters on Mars have distinctive morphologic characteristics that suggest they were modified by runoff from rainfall in a predominantly warm and wet early Mars climate. However, melting and runoff of frozen water ice (snowmelt) represents a plausible alternative for fluvial erosion in the Noachian. In recent work, we described a "closed-source drainage basin" (CSDB) crater in Terra Sabaea that contained inverted fluvial channel networks and lacustrine deposits. The crater is not breached by fluvial channels and lacks depositional morphologies such as fans or deltas, which sets it apart from previously described open- and closed-basin lakes on Mars that are hydrologically connected to their surroundings. The lack of hydrologic connectivity, along with additional evidence of remnant cold-based glacial morphologies within the crater, led us to hypothesize top-down melting of a cold-based crater wall glacier as the source of runoff and sediment for the fluvial and lacustrine deposits, which produced one or more proglacial lakes within the crater.</p><p>Here, we describe the results of a follow-on survey of the region within 500 km of the first CSDB crater. We searched for examples of features that could be interpreted as inverted fluvial channels regardless of their location. Of the 42 inverted channel networks we identified, 19 are located within unbreached craters; 17 are within breached craters with at least one inlet but no outlets; and 6 are located in the intercrater plains. The features are not randomly distributed; rather, they form two distinct groupings, one in the southwest of the study area and another in the east, with very few in the north or west. All but one occurs within an elevation range of 0 to +3 km. There are several previously identified closed-basin lakes within the study area, but none contained inverted channels.</p><p><span>The 42 inverted channel systems represent a wide variety of geologic and hydrologic settings. The region has distinctly low valley network density, and the few mapped valley networks in the region are clustered around +2 km elevation. If the fluvial regime were controlled primarily by elevation, and assuming no significant sequestration, lower elevations should have greater overall runoff production due to the accumulation of flow from upslope. The difference between breached and unbreached craters could therefore represent glacial melting occurring within craters (higher elevation) as opposed to significantly upslope of them (lower elevation), which would instead promote runoff and breaching of craters by valley networks.</span></p><p>We previously described a single CSDB crater that showed evidence for cold-based crater wall glaciation, sedimentation and proglacial lake formation, but this new work adds a significant body of evidence that such processes were operating at much greater regional scales. While runoff from rainfall is usually considered the most likely mechanism of fluvial erosion in the Noachian, the possibility remains that fluvial erosion could have occurred via snowmelt in a subfreezing ambient climate. We have provided compelling evidence that fluvial and lacustrine features could have formed in such a climate and that Noachian Mars may have been colder than previously believed.</p>


2021 ◽  
Author(s):  
Felix Bernsteiner ◽  
Andreas Kellerer-Pirklbauer

<p>The recession of glaciers reveals a dynamic landscape exposed to high rates of hydrological and geomorphological modifications. Such deglaciation processes caused the formation of a 0.3 km² large proglacial lake (named Pasterzensee) near the terminus of Pasterze Glacier, Austria, during the last two decades. The evolution of the proglacial lake was accompanied by several buoyant calving events. The process of buoyant calving formed numerous floating dead ice bodies referred to as icebergs which covered a maximum of 7.3 % of the entire proglacial lake basin in November 2018.</p><p>Despite the existence of icebergs at some proglacial lakes in the European Alps, little is known about the evolution and life span of icebergs in proglacial lakes in the European Alps. The aim of this study was to reduce this research gap by (a) quantifying the evolution of such alpine icebergs during two different time scales and by (b) analysing the relationship between iceberg evolution and motion at the lake with meteorological conditions. At a long-term scale, one single iceberg was monitored during the period 01.09.2017-30.09.2019. At a short-term scale, all icebergs were studied during one single day (16.06.2019).</p><p>The most important data source for this study were time-lapse optical imagery from an automatic camera overlooking the entire proglacial lake (GROHAG). The used camera is a Roundshot Livecam Generation 2 (Seitz, Switzerland). Photographic imagery is captured every five minutes (during daylight) from a location 310 m above lake level and 450 m northeast of the lake margin. For the long-term analysis, a total number of 386 pictures of the lake were processed. For the short-term analysis, 97 pictures were analysed to reveal the dynamics of 84 icebergs during one single day. The oblique time-lapse images were transformed into orthorectified photos using a rectification algorithm which considers the camera properties and the lake surface geometry. Iceberg size and centroid coordinates were mapped in all generated orthophotos. In addition, meteorological data (ZAMG Vienna) was provided by a nearby automatic weather station, located at the glacier tongue of Pasterze Glacier some 1.1 km northwest of the lake margin.</p><p>Results indicate that the monitoring of one iceberg over a period of 25 months revealed highest melting rates from June to August, low melting rates from September to November and no measurable melting when the lake surface is frozen. Horizontal iceberg displacement is rising with decreasing iceberg size throughout the study period. The analysed iceberg formed during the detachment of a debris covered ice peninsula with an initial size of 7250 m² and was last identifiable at a size of 240 m². Monitoring lake-wide iceberg movement for one day shows that wind is the main influence on horizontal iceberg displacement. The existence of a strong valley wind, caused by a diurnal warming cycle, is observed. This wind system decouples the iceberg movement from the constant katabatic glacier wind, recorded by the weather station. Frequent jumps in movement rates, which are not explained by wind data, suggest that iceberg grounding is a common process influencing subaquatic lake morphology.</p>


2021 ◽  
pp. 1-18
Author(s):  
Wilhelm Furian ◽  
David Loibl ◽  
Christoph Schneider

Abstract Bedrock overdeepenings exposed by continued glacial retreat can store precipitation and meltwater, potentially leading to the formation of new proglacial lakes. These lakes may pose threats of glacial lake outburst floods (GLOFs) in high mountain areas, particularly if new lakes form in geomorphological setups prone to triggering events such as landslides or moraine collapses. We present the first complete inventory for future glacial lakes in High Mountain Asia by computing the subglacial bedrock for ~100 000 glaciers and estimating overdeepening area, volume and impact hazard for the larger potential lakes. We detect 25 285 overdeepenings larger than 104 m2 with a volume of 99.1 ± 28.6 km3 covering an area of 2683 ± 773.8 km2. For the 2700 overdeepenings larger than 105 m2, we assess the lake predisposition for mass-movement impacts that could trigger a GLOF by estimating the hazard of material detaching from surrounding slopes. Our findings indicate a shift in lake area, volume and GLOF hazard from the southwestern Himalayan region toward the Karakoram. The results of this study can be used for anticipating emerging threats and potentials connected to glacial lakes and as a basis for further studies at suspected GLOF hazard hotspots.


2021 ◽  
Vol 13 (2) ◽  
pp. 741-766 ◽  
Author(s):  
Fang Chen ◽  
Meimei Zhang ◽  
Huadong Guo ◽  
Simon Allen ◽  
Jeffrey S. Kargel ◽  
...  

Abstract. Atmospheric warming is intensifying glacier melting and glacial-lake development in High Mountain Asia (HMA), and this could increase glacial-lake outburst flood (GLOF) hazards and impact water resources and hydroelectric-power management. There is therefore a pressing need to obtain comprehensive knowledge of the distribution and area of glacial lakes and also to quantify the variability in their sizes and types at high resolution in HMA. In this work, we developed an HMA glacial-lake inventory (Hi-MAG) database to characterize the annual coverage of glacial lakes from 2008 to 2017 at 30 m resolution using Landsat satellite imagery. Our data show that glacial lakes exhibited a total area increase of 90.14 km2 in the period 2008–2017, a +6.90 % change relative to 2008 (1305.59±213.99 km2). The annual increases in the number and area of lakes were 306 and 12 km2, respectively, and the greatest increase in the number of lakes occurred at 5400 m elevation, which increased by 249. Proglacial-lake-dominated areas, such as the Nyainqêntanglha and central Himalaya, where more than half of the glacial-lake area (summed over a 1∘ × 1∘ grid) consisted of proglacial lakes, showed obvious lake-area expansion. Conversely, some regions of eastern Tibetan mountains and Hengduan Shan, where unconnected glacial lakes occupied over half of the total lake area in each grid, exhibited stability or a slight reduction in lake area. Our results demonstrate that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Proglacial lakes in the Himalaya ranges alone accounted for 36.27 % (32.70 km2) of the total area increase. Regional geographic variability in debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supraglacial- and proglacial-lake area across HMA. The Hi-MAG database is available at https://doi.org/10.5281/zenodo.4275164 (Chen et al., 2020), and it can be used for studies of the complex interactions between glaciers, climate and glacial lakes, studies of GLOFs, and water resources.


2021 ◽  
pp. 1-12
Author(s):  
Junfeng Wei ◽  
Shiyin Liu ◽  
Xin Wang ◽  
Yong Zhang ◽  
Zongli Jiang ◽  
...  

Abstract During the last few decades, the lake-terminating glaciers in the Himalaya have receded faster than the land-terminating glaciers as proglacial lakes have exacerbated the mass loss of their host glaciers. Monitoring the impacts of glacier recession and dynamics on lake extent and water volume provides an approach to assess the mass interplay between glaciers and proglacial lakes. We describe the recession of Longbasaba Glacier and estimate the mass wastage and its contribution to the water volume of its proglacial lake. The results show that the glacier area has decreased by 3% during 1988–2018, with a more variable recession prior to 2008 than in the last decade. Longbasaba Lake has expanded by 164% in area and 237% in water volume, primarily as a result of meltwater inflow produced from surface lowering of the glacier. Over the periods 1988–2000 and 2000–18, the mass loss contributed by glacier thinning has decreased from 81 to 61% of the total mass loss, accompanied by a nearly doubled contribution from terminus retreat. With the current rate of retreat, Longbasaba glacier is expected to terminate in its proglacial lake for another four decades. The hazard risk of this lake is expected to continue to increase in the near future because of the projected continued glacier mass loss and related lake expansion.


Sign in / Sign up

Export Citation Format

Share Document