Origin of the Continuous Component of the Variation in the Solar and Stellar Activity Spectra

2021 ◽  
Vol 61 (7) ◽  
pp. 911-916
Author(s):  
D. D. Sokoloff ◽  
P. G. Frick
1998 ◽  
Vol 506 (1) ◽  
pp. 347-359 ◽  
Author(s):  
David Barrado y Navascués ◽  
John R. Stauffer ◽  
Sofia Randich

2009 ◽  
Vol 5 (S264) ◽  
pp. 385-394 ◽  
Author(s):  
J.-M. Grießmeier ◽  
M. Khodachenko ◽  
H. Lammer ◽  
J. L. Grenfell ◽  
A. Stadelmann ◽  
...  

AbstractStellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.


2010 ◽  
Vol 6 (S273) ◽  
pp. 89-95 ◽  
Author(s):  
A. F. Lanza

AbstractThe photospheric spot activity of some of the stars with transiting planets discovered by the CoRoT space experiment is reviewed. Their out-of-transit light modulations are fitted by a spot model previously tested with the total solar irradiance variations. This approach allows us to study the longitude distribution of the spotted area and its variations versus time during the five months of a typical CoRoT time series. The migration of the spots in longitude provides a lower limit for the surface differential rotation, while the variation of the total spotted area can be used to search for short-term cycles akin the solar Rieger cycles. The possible impact of a close-in giant planet on stellar activity is also discussed.


2006 ◽  
Vol 43 (4) ◽  
pp. 1107-1118 ◽  
Author(s):  
Alexander D. Kolesnik

We consider the random motion of a particle that moves with constant finite speed in the space ℝ4 and, at Poisson-distributed times, changes its direction with uniform law on the unit four-sphere. For the particle's position, X(t) = (X1(t), X2(t), X3(t), X4(t)), t > 0, we obtain the explicit forms of the conditional characteristic functions and conditional distributions when the number of changes of directions is fixed. From this we derive the explicit probability law, f(x, t), x ∈ ℝ4, t ≥ 0, of X(t). We also show that, under the Kac condition on the speed of the motion and the intensity of the switching Poisson process, the density, p(x,t), of the absolutely continuous component of f(x,t) tends to the transition density of the four-dimensional Brownian motion with zero drift and infinitesimal variance σ2 = ½.


2014 ◽  
Vol 793 (2) ◽  
pp. L24 ◽  
Author(s):  
Paul Robertson ◽  
Suvrath Mahadevan
Keyword(s):  

2015 ◽  
Vol 101 ◽  
pp. 05004
Author(s):  
Roxanne Ligi ◽  
Denis Mourard ◽  
Anne-Marie Lagrange ◽  
Karine Perraut ◽  
Andrea Chiavassa
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document