Computer simulation of the critical behavior of magnetic systems with competition between the short- and long-range interactions

2016 ◽  
Vol 117 (11) ◽  
pp. 1079-1084 ◽  
Author(s):  
S. V. Belim ◽  
I. B. Larionov ◽  
R. V. Soloneckiy
1997 ◽  
Vol 11 (07) ◽  
pp. 919-928
Author(s):  
S. Romano

We have considered a classical spin system, consisting of 3-component unit vectors, associated with a two-dimensional lattice {uk, k∈ Z2}, and interacting via translationally invariant pair potentials, isotropic in spin space, and of the long-range form [Formula: see text] Here ∊ is a positive constant setting energy and temperature scales (i.e. T*=k B T /∊), P2 denotes the second Legendre polynomial, and xj are dimensionless coordinates of the lattice sites. Available theorems entail the existence of an ordering transition at finite temperature when 0 < σ < 2, and its absence when σ ≥ 2. We have studied the border case σ=2, by means of computer simulation. Similarly to the nearest-neighbour counterpart of the present model, and to other long-range models, we found evidence suggesting a transition to a low-temperature phase with slow decay of correlations and infinite susceptibility, i.e. a Berezhinski[Formula: see text]–Kosterlitz–Thouless-like transition; the transition temperature was estimated to be Θ=1.112 ± 0.005.


2016 ◽  
Vol 93 (6) ◽  
Author(s):  
José A. Carrasco ◽  
Federico Finkel ◽  
Artemio González-López ◽  
Miguel A. Rodríguez ◽  
Piergiulio Tempesta

1995 ◽  
Vol 09 (25) ◽  
pp. 3345-3354 ◽  
Author(s):  
S. ROMANO

We have considered a classical spin system, consisting of 3-component unit vectors, associated with a one-dimensional lattice {uk, k ∈ Z}, and interacting via translationally invariant pair potentials, isotropic in spin space, and of the long-range form [Formula: see text] where ∊ is a positive constant setting energy and temperature scales (i.e. T* = kBT/∊). Extending previous rigorous results, one can prove the existence of an ordering transition at finite temperature when 0 < σ < 1, and its absence when σ ≥ 1. We have studied the border case σ = 1, by means of computer simulation. Similarly to the magnetic counterparts of the present model, we found evidence suggesting a transition to a low-temperature phase with slow decay of correlations and infinite susceptibility, i.e. a Berezhinskiǐ–Kosterlitz–Thouless-like transition; the transition temperature was estimated to be Θ = 0.475 ± 0.005.


Sign in / Sign up

Export Citation Format

Share Document