Sorption of rare-earth elements from phosphogypsum sulfuric acid leaching solutions

2015 ◽  
Vol 49 (5) ◽  
pp. 773-778 ◽  
Author(s):  
E. P. Lokshin ◽  
O. A. Tareeva ◽  
I. R. Elizarova
2020 ◽  
Vol 11 (4) ◽  
pp. 804
Author(s):  
Iga Trisnawati ◽  
Gyan Prameswara ◽  
Panut Mulyono ◽  
Agus Prasetya ◽  
Himawan Tri Bayu Murti Petrus

2020 ◽  
Vol 191 ◽  
pp. 105195 ◽  
Author(s):  
Nguyen Trong Hung ◽  
Le Ba Thuan ◽  
Tran Chi Thanh ◽  
Masayuki Watanabe ◽  
Hoang Nhuan ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Lijie Chen ◽  
Jiacong Xu ◽  
Xiaoqiang Yu ◽  
Lei Tian ◽  
Ruixiang Wang ◽  
...  

Rare earth element recovery in molten salt electrolysis is approximately between 91 and 93%, whereof 8% is lost in waste molten salt slag. Presently, minimal research has been conducted on the technology for recycling waste rare earth molten salt slag, which is either discarded as industrial garbage or mixed with waste slag into qualified molten salt. The development of a new approach toward the effective treatment of rare earth fluoride molten salt electrolytic slag, which can recycle the remaining rare earth and improve the utilization rate, is essential. Herein, weak magnetic iron separation, sulfuric acid leaching transformation, water leaching, hydrogen fluoride water absorption, and cycle precipitation of rare earth are used to recover rare earth from their fluoride molten salt electrolytic slag, wherein the thermodynamic and kinetic processes of sulfuric acid leaching transformation are emphatically studied. Thermodynamic results show that temperature has a great influence on sulfuric acid leaching. With rising temperature, the equilibrium constant of the reaction gradually increases, and the stable interval of NdF3 decreases, while that of Nd3+ increases, indicating that high temperature is conducive to the sulfuric acid leaching process, whereof the kinetic results reveal that the activation energy E of Nd transformation is 41.57 kJ/mol, which indicates that the sulfuric acid leaching process is controlled by interfacial chemical reaction. According to the Nd transformation rate equation in the sulfuric acid leaching process of rare earth fluoride molten salt electrolytic slag under different particle size conditions, it is determinable that with the decrease of particle size, the reaction rate increases accordingly, while strengthening the leaching kinetic process. According to the equation of Nd transformation rate in the sulfuric acid leaching process under different sulfuric acid concentration conditions, the reaction series of sulfuric acid concentration K = 6.4, which is greater than 1, indicating that increasing sulfuric acid concentration can change the kinetic-control region and strengthen the kinetic process.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 810
Author(s):  
Zhanyong Guo ◽  
Ping Guo ◽  
Guang Su ◽  
Fachuang Li

In this paper, nickel-containing residue, a typical solid waste produced in the battery production process, was used to study the cavitation characteristics of ultrasonic waves in a liquid–solid reaction. The ultrasonically-enhanced leaching technology for multicomponent and complex nickel-containing residue was studied through systematic ultrasonic-conventional comparative experiments. An ultrasonic leaching kinetics model was established which provided reliable technological guidance and basic theory for the comprehensive utilization of nickel-containing residue. In the study, it was found that ultrasonically-enhanced leaching for 40 min obtained the same result as conventional leaching for 80 min, and the Ni extraction degree reached more than 95%. According to the kinetic fitting of the leaching process, it was found that the sulfuric acid leaching process belonged to the diffusion-controlled model of solid product layers under conventional and ultrasonic conditions, and the activation energy of the reaction was Ea1 = 17.74 kJ/mol and Ea2 = 5.04 kJ/mol, respectively.


Sign in / Sign up

Export Citation Format

Share Document