acid solutions
Recently Published Documents


TOTAL DOCUMENTS

5566
(FIVE YEARS 451)

H-INDEX

93
(FIVE YEARS 8)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juan Du ◽  
Mengyao Yu ◽  
Pingli Liu ◽  
Yongqiang Fu ◽  
Gang Xiong ◽  
...  

Purpose This paper aims to analyze the high temperature (200°C) corrosion behavior of 2205 duplex stainless steel in acidizing stimulation solution containing hydrochloric acid (HCl) and acetic acid. Design/methodology/approach The corrosion rate of 2205 duplex stainless steel in all kinds of acid solutions was calculated through immersion tests and electrochemical test. The corrosion product composition is analyzed by X-ray diffraction analysis. The element composition and element distribution before and after corrosion were analyzed by an X-ray energy spectrometer. The corrosion morphology of the steel surface was observed by a scanning electron microscope. Both static and dynamic corrosion experiments were carried out at 200°C. Findings The results show that 2205 duplex stainless steel has excellent corrosion resistance in low to high concentration acetic acid solutions, but increasing the concentration of Cl− in acetic acid solution will accelerate the corrosion rate. Low concentration HCl solution can cause serious corrosion to 2205 duplex stainless steel. The system of HCl and acetic acid will produce a synergistic effect on corrosion of 2205 duplex stainless steel and accelerate the corrosion. Sb2O3 is a good corrosion inhibitor synergist for high-temperature acidizing stimulation solution. Originality/value The amount of HCl that is used in acidizing stimulation is usually determined by the dissolution effect of the acid on the rocks, but for ultra-high-temperature reservoirs, the amount of HCl should be based on reducing the corrosion of oil and gas wells.


Pharmacia ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 9-13
Author(s):  
Theerasak Rojanarata ◽  
Kittithat Maithongdee ◽  
Nattapong Yuwansri ◽  
Sirada Kaewprasert ◽  
Thana Thanayutsiri ◽  
...  

In many pharmacopoeias, the limit test used for determining the level of aluminum in citric acid labeled for use in the manufacture of dialysate, is based on solvent extraction using 8-hydroxyquinoline and measurement of fluorescence. However, the fluorescence intensity (F.I.) readout from the extract of citric acid samples has been found to be highly dubious, showing low value, and even lower than that of a blank solution. The aim of this work therefore was to examine what effects the matrix has on the test. The comparison of the two standard curves of aluminum solutions in water, against those prepared in citric acid solutions revealed that they differed greatly in terms of slope and y-intercept. In addition, the F.I. values on the plot of the citric acid solution were much lower than that prepared in the water. In another experiment, a decrease in the F.I. of aluminum solution was clearly seen when the co-existing concentration of citric acid was increased. The results inferred that citric acid interfered with the test due to its acidity and metal-chelating capabilities. Based on this evidence, the pharmacopeial limit test for aluminum in citric acid should be revised; otherwise, it could yield results that underestimate aluminum levels and lead to inaccurate conclusions


RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 1121-1129
Author(s):  
Jinxing Kang ◽  
Yayun Wang ◽  
Yunfei Qiu

The effect of Fe3+ ions on the ocean manganese nodule reductive leaching in imitated sulphuric acid solutions was investigated.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012011
Author(s):  
I V Zinov’eva

Abstract Today, metal extraction from e-waste is beneficial from both an environmental and economic point of view. Natural resources of metals, especially platinum group metals, are limited. At the same time, the amount of waste containing many valuable elements continues to grow. In this work, we studied the extraction of Pt (IV) from hydrochloric acid solutions using polypropylene glycol 425 (PPG 425). In the course of the experimental work, the dependence of the platinum extraction degree on the influence of hydrochloric acid concentration and medium pH in the polypropylene glycol 425 - sodium chloride - water system have been established. The maximum recovery (distribution coefficient > 3,5) has been achieved in the presence of 2 M HCl in an aqueous two-phase system (ATPS), which allows the use of the proposed system for the extraction of platinum from leaching solutions.


2022 ◽  
Author(s):  
Hao Lou ◽  
Michael Hageman

This study aimed to investigate the diffusivities of lysozyme (LYS), ovalbumin (OVA), and hyaluronic acid (HA) in buffered solvents using dynamic light scattering (DLS). For protein/solvent and HA/solvent binary systems,...


2021 ◽  
Vol 10 (4) ◽  
pp. 108-114
Author(s):  
T. A. Bitkina ◽  
A. V. Basevich

Introduction. The article presents the development of solutions based on the comenic acid substance. The criteria of the studied compositions that affect their stability during storage are evaluated within the framework of the Quality-by-Design concept. The optimal compositions of comenic acid solutions have been established.Aim. The purpose of the study is to develop solutions based on the comenic acid substance and determine the most stable variants of execution.Materials and methods. The study of comenic acid solutions was carried out by using a laboratory pH meter PB-11-P11 (SARTORIUS, Germany) and a liquid/ion chromatograph "Stayer" ("Akvilon" JSC, Russia).Results and discussion. The study made it possible to determine the most stable compositions of solutions based on the comenic acid substance and to establish optimal indicators of their stability criteria. It was found that solutions of comenic acid are the most stable in the pH range: from 4.0 to 6.0. At the same time, regardless of the studied methods of neutralization of comenic acid, solutions are unstable at concentrations of 25 mg/ml or more.Conclusion. As a result of the study, the optimal compositions of solutions based on the comenic acid substance were determined. A comparative analysis of excipients that increase the solubility of comenic acid in aqueous solvents is performed. The stability criteria of the studied solutions are established and their values for ensuring the stability of the developed drug are determined.


2021 ◽  
Vol 6 (3(62)) ◽  
pp. 11-14
Author(s):  
Oleh Zimin

The object of research in this work is the intensification of hydrocarbon production. The most problematic task of the study is the efficiency of intensification of compacted high-temperature carbonate reservoirs. Despite the gradual transition to renewable energy sources, natural gas and oil will play a dominant role in the world's energy balance in the next 20–30 years. Carbonate rocks have significant mining potential, but low filtration properties require intensification to improve reservoir permeability. High temperatures and pressures at great depths require the improvement of existing hydrocarbon production technologies. The most popular method for treating reservoirs containing carbonates is acid treatments in different variations, but for effective treatment it is necessary to achieve deep penetration of the solution into the formation. The study solves the problem of selection of effective carrier liquids for the preparation of acid solutions for the treatment of compacted high-temperature reservoirs with high carbonate content. To ensure quality treatment, acid solutions must have low viscosity and surface tension coefficient, low reaction rate, their chemical properties must ensure the absence of insoluble precipitates in the process of reactions with fluids and rocks, as well as be environmentally friendly. To select the most optimal carrier liquid, experiments were conducted to determine which candidate liquids provide the minimum reaction rate of acidic solutions with carbonates. Based on the analysis of industrial application data and literature sources, water, nephras, methanol, ethyl acetate, and methyl acetate were selected for further research. Widely studied acetic acid was chosen as the basic acid. Studies have shown that methyl acetate has a number of advantages, namely low reaction rate, low viscosity and surface tension coefficient. As well as the possibility of hydrolysis in the formation with the release of acetic acid, which significantly prolongs the reaction time of the solution with the rock and the depth of penetration of the active solution into the formation.


MRS Advances ◽  
2021 ◽  
Author(s):  
Maria Vallejo-Martinez ◽  
Melissa Puerta ◽  
Adriana Restrepo-Osorio

Sign in / Sign up

Export Citation Format

Share Document