sulfuric acid leaching
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 58)

H-INDEX

21
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1392
Author(s):  
Alidor Shikika ◽  
Francois Zabene ◽  
Fabrice Muvundja ◽  
Mac C. Mugumaoderha ◽  
Julien L. Colaux ◽  
...  

A novel approach for Ta and Nb extraction consisting of the pre-treatment of a coltan-bearing ore with an ammonium bifluoride sub-molten salt and subsequent acid leaching has been studied. The effects from ore granulometry, ammonium bifluoride (ABF) to ore mass ratio, temperature and duration of fluorination on the degree of Ta and Nb extraction were examined. The ABF to ore ratio and process temperature were found to have the most pronounced impact on extraction efficiency. The following optimal process conditions were determined: ore granulometric fraction (−75 + 45 µm), ABF-ore (5/1), fluorination temperature (200 °C) and fluorination time (2.5 h). Maintaining these parameters enabled about 94% of Ta and 95% of Nb to be brought into solution during the sulfuric-acid-leaching stage. A comparison of the proposed method with previously reported studies suggests that due to the effects of mechanical agitation and the recirculation of the HF-containing gaseous phase back into the process, the dosage rate of ABF at the fluorination stage could be reduced significantly without sacrificing the overall recovery of Ta and Nb. In such a way, the approach could offer added environmental benefits since release of fluoride-containing effluents into the environment could be limited.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1375
Author(s):  
Juan Yang ◽  
Xuqin Duan ◽  
Lingchuan Liu ◽  
Huifen Yang ◽  
Xiaocui Jiang

This paper provides a technical approach for efficiently recovering Mg from ferronickel slag to produce high-quality magnesium oxide (MgO) by using the sulfuric acid leaching method under atmospheric pressure. The leaching rate of magnesium is 84.97% after a typical one-step acid leaching process, which is because Mg in FNS mainly exists in the forsterite (Mg2SiO4) phase, which is chemically stable. In order to increase the leaching rate, a two-step acid leaching process was proposed in this work, and the overall leaching rate reached up to 95.82% under optimized conditions. The response surface methodology analysis for parameter optimization and Mg leaching rules revealed that temperature was the most critical factor affecting the Mg leaching rate when the sulfuric acid concentration was higher than 2 mol/L, followed by acid leaching time. Furthermore, interactive behavior also existed between the leaching temperature and leaching time. The leaching kinetics of magnesium from FNS followed a shrinkage-nuclear-reaction model with composite control, which were chemically controlled at lower temperatures and diffusion controlled at higher temperatures; the corresponding apparent activation energy was 19.57 kJ/mol. The leachate can be used to obtain spherical-like alkali magnesium carbonate particles with diameters of 5–10 μm at 97.62% purity. By using a further calcination process, the basic magnesium carbonate can be converted into a light magnesium oxide powder with a particle size of 2–5 μm (MgO content 94.85%), which can fulfill first-level quality standards for industrial magnesium oxide in China.


2021 ◽  
Vol 92 (11) ◽  
Author(s):  
Mukaddas Fazilova ◽  
Shodlik Khasanov ◽  
Umarbek Alimov ◽  
Dilshod Ibragimov ◽  
Saidjon Sadullaev

2021 ◽  
pp. 105799
Author(s):  
Chengjin Xu ◽  
Ling Li ◽  
Miaomiao Zhang ◽  
Xiao Meng ◽  
Xiujing Peng ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1922
Author(s):  
Anastasiia V. Dubenko ◽  
Mykola V. Nikolenko ◽  
Oleksandr O. Pasenko ◽  
Andrii Kostyniuk ◽  
Blaž Likozar

A new method of altered ilmenite processing has been studied. In this method, sulfuric acid is used as the reaction medium of the process, and fluoride ions are activators of the dissolving process of the rutile part of the ore raw material. The regression model of the sulfate–fluoride leaching process was developed and analyzed by using the response surface method of 23 matrix. The obtained model is adequate and well describes the studied process. The influence of Ti:F molar ratio, temperature, and sulfuric acid concentration on the leaching process are investigated in this work in order to optimize the studied process. It is experimentally proved that leaching at temperatures above 100 °C, at a molar ratio of Ti:F of more than 1:2, and the use of solutions of sulfuric acid with concentrations of more than 85 wt.% is not optimal because the extraction degree of titanium is reduced. The intensification of the process of sulfuric acid leaching by dividing the main stage of chemical dissolution of ilmenite into two stages was proposed. This method allows to leach up to 95.9% of titanium, which is 1.6–1.9 times higher in comparison with the classical technology of leaching altered ilmenite.


Author(s):  
Анна Игоревна Пичугина ◽  
Дарья Дмитриевна Гончар

В работе представлены результаты исследования кинетики сернокислого выщелачивания никеля из его сульфидов. В качестве модельных образцов выбраны синтезированные сульфиды никеля по составу и строению идентичные природным минералам: миллериту и хизлевудиту. Получены зависимости влияния скорости извлечения металла от концентрации серной кислоты, температуры, частоты вращения диска и продолжительности взаимодействия. Рассчитаны полиномиальные модели изучаемого процесса, преобразованные в уравнения скорости. Вычислены константы скорости и эмпирические значения энергии активации. The paper presents the results of a study of the kinetics of sulfuric acid leaching of nickel from its sulfides. Synthesized nickel sulfides were selected as model samples, identical in composition and structure to natural minerals: millerite and heazlewudite. The dependences of the influence of the metal extraction rate on the concentration of sulfuric acid, temperature, disk rotation frequency and duration of interaction are obtained. The polynomial models of the process under study, transformed into velocity equations, are calculated. The rate constants and empirical values of the activation energy are calculated.


Author(s):  
A.K. Dikanbayeva ◽  
A.P. Auyeshov ◽  
M.S. Satayev ◽  
K.T. Arynov ◽  
Ch.Z. Yeskibayeva

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1320
Author(s):  
Viet-NhanHoa Nguyen ◽  
Si-Jeong Song ◽  
Man-Seung Lee

Palladium (Pd) electroplating is widely practiced in the manufacture of advanced electronic devices. The Pd(II) present in spent electroplating solutions is treated by cementation with zinc (Zn) metal powder. In order to recover pure Pd from the cemented Pd, a process that consisted of leaching followed by solvent extraction was investigated. For this purpose, solvent extraction experiments using synthesized ionic liquids (ILs) with organic and inorganic anions were performed to find separation conditions at which selective extraction of Pd(II) over Zn(II) from synthetic H2SO4 leaching solutions is possible. The concentration of sulfuric acid was varied from 0.5 to 9 M. The complete separation of Pd(II) over Zn(II) by ILs such as ALi–CY301 (N-methyl-N,N,N-trioctylammonium bis(2,4,4-trimethylpentyl) dithiophosphinic), ALi–SCN (N-methyl-N,N,N-trioctylammonium thiocyanate), ALi–I (N-methyl-N,N,N-trioctylammonium iodide) and ALi–Br (N-methyl-N,N,N-trioctylammonium bromide) depends on H2SO4 concentration, while ALi–LIX63 (N-methyl-N,N,N-trioctylammonium 5,8-diethyl-7-hydroxydodecane-6-oxime) and ALi–LIX84 (N-methyl-N,N,N-trioctylammonium 2-hydroxy-5-nonylacetophenone oxime) can completely separate Pd(II) irrespective of H2SO4 concentration. Additionally, the mixture of HCl and thiourea, aqua regia solution, NH3 solution and the mixture of NH4Cl and NH3 are powerful stripping agents for Pd(II) from the loaded ALi–LIX63/ALi–LIX84, ALi–CY301, ALi–Br/ALi–I and ALi–SCN, respectively. However, application of the separation conditions to the real 5 M sulfuric acid leaching solutions of cemented Pd indicated that it was difficult to separate the two ions by extraction with ALi–LIX63 and ALi–LIX84. Use of NaClO as an oxidizing agent during the sulfuric acid leaching of real cemented Pd resulted in an enhancement of Zn(II) extraction by ALi–LIX63 and ALi–LIX84. Therefore, removal of chloride ions from the sulfuric acid leaching solutions is necessary to apply the separation conditions obtained from synthetic sulfuric acid leaching solutions.


Sign in / Sign up

Export Citation Format

Share Document