scholarly journals Hitchin Systems on Hyperelliptic Curves

2020 ◽  
Vol 311 (1) ◽  
pp. 22-35 ◽  
Author(s):  
P. I. Borisova ◽  
O. K. Sheinman
2015 ◽  
Vol 18 (1) ◽  
pp. 258-265 ◽  
Author(s):  
Jennifer S. Balakrishnan

The Coleman integral is a $p$-adic line integral that encapsulates various quantities of number theoretic interest. Building on the work of Harrison [J. Symbolic Comput. 47 (2012) no. 1, 89–101], we extend the Coleman integration algorithms in Balakrishnan et al. [Algorithmic number theory, Lecture Notes in Computer Science 6197 (Springer, 2010) 16–31] and Balakrishnan [ANTS-X: Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Series 1 (Mathematical Sciences Publishers, 2013) 41–61] to even-degree models of hyperelliptic curves. We illustrate our methods with numerical examples computed in Sage.


2008 ◽  
Vol 2 (8) ◽  
pp. 859-885 ◽  
Author(s):  
Yann Bugeaud ◽  
Maurice Mignotte ◽  
Samir Siksek ◽  
Michael Stoll ◽  
Szabolcs Tengely

Author(s):  
Florian Beck ◽  
Ron Donagi ◽  
Katrin Wendland

Abstract Folding of ADE-Dynkin diagrams according to graph automorphisms yields irreducible Dynkin diagrams of $\textrm{ABCDEFG}$-types. This folding procedure allows to trace back the properties of the corresponding simple Lie algebras or groups to those of $\textrm{ADE}$-type. In this article, we implement the techniques of folding by graph automorphisms for Hitchin integrable systems. We show that the fixed point loci of these automorphisms are isomorphic as algebraic integrable systems to the Hitchin systems of the folded groups away from singular fibers. The latter Hitchin systems are isomorphic to the intermediate Jacobian fibrations of Calabi–Yau orbifold stacks constructed by the 1st author. We construct simultaneous crepant resolutions of the associated singular quasi-projective Calabi–Yau three-folds and compare the resulting intermediate Jacobian fibrations to the corresponding Hitchin systems.


1934 ◽  
Vol 30 (2) ◽  
pp. 170-177 ◽  
Author(s):  
J. Bronowski

The surfaces whose prime-sections are hyperelliptic curves of genus p have been classified by G. Castelnuovo. If p > 1, they are the surfaces which contain a (rational) pencil of conics, which traces the on the prime-sections. Thus, if we exclude ruled surfaces, they are rational surfaces. The supernormal surfaces are of order 4p + 4 and lie in space [3p + 5]. The minimum directrix curve to the pencil of conics—that is, the curve of minimum order which meets each conic in one point—may be of any order k, where 0 ≤ k ≤ p + 1. The prime-sections of these surfaces are conveniently represented on the normal rational ruled surfaces, either by quadric sections, or by quadric sections residual to a generator, according as k is even or odd.


Sign in / Sign up

Export Citation Format

Share Document