scholarly journals Folding of Hitchin Systems and Crepant Resolutions

Author(s):  
Florian Beck ◽  
Ron Donagi ◽  
Katrin Wendland

Abstract Folding of ADE-Dynkin diagrams according to graph automorphisms yields irreducible Dynkin diagrams of $\textrm{ABCDEFG}$-types. This folding procedure allows to trace back the properties of the corresponding simple Lie algebras or groups to those of $\textrm{ADE}$-type. In this article, we implement the techniques of folding by graph automorphisms for Hitchin integrable systems. We show that the fixed point loci of these automorphisms are isomorphic as algebraic integrable systems to the Hitchin systems of the folded groups away from singular fibers. The latter Hitchin systems are isomorphic to the intermediate Jacobian fibrations of Calabi–Yau orbifold stacks constructed by the 1st author. We construct simultaneous crepant resolutions of the associated singular quasi-projective Calabi–Yau three-folds and compare the resulting intermediate Jacobian fibrations to the corresponding Hitchin systems.

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Xia Dong ◽  
Tiecheng Xia ◽  
Desheng Li

By use of the loop algebraG-~, integrable coupling of C-KdV hierarchy and its bi-Hamiltonian structures are obtained by Tu scheme and the quadratic-form identity. The method can be used to produce the integrable coupling and its Hamiltonian structures to the other integrable systems.


2019 ◽  
Vol 1 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Michel Planat ◽  
Raymond Aschheim ◽  
Marcelo M. Amaral ◽  
Klee Irwin

The fundamental group π 1 ( L ) of a knot or link L may be used to generate magic states appropriate for performing universal quantum computation and simultaneously for retrieving complete information about the processed quantum states. In this paper, one defines braids whose closure is the L of such a quantum computer model and computes their braid-induced Seifert surfaces and the corresponding Alexander polynomial. In particular, some d-fold coverings of the trefoil knot, with d = 3 , 4, 6, or 12, define appropriate links L, and the latter two cases connect to the Dynkin diagrams of E 6 and D 4 , respectively. In this new context, one finds that this correspondence continues with Kodaira’s classification of elliptic singular fibers. The Seifert fibered toroidal manifold Σ ′ , at the boundary of the singular fiber E 8 ˜ , allows possible models of quantum computing.


1989 ◽  
Vol 5 (1) ◽  
pp. 95-96 ◽  
Author(s):  
Zha Jianguo
Keyword(s):  

2012 ◽  
Vol 57 (6) ◽  
pp. 1012-1022 ◽  
Author(s):  
Yu-Feng Zhang ◽  
Jian-Qin Mei

2019 ◽  
Vol 19 (11) ◽  
pp. 2050223
Author(s):  
Noriaki Kamiya ◽  
Daniel Mondoc

In this work, we discuss a classification of [Formula: see text]-Freudenthal–Kantor triple systems defined by bilinear forms and give all examples of such triple systems. From these results, we may see a construction of some simple Lie algebras or superalgebras associated with their Freudenthal–Kantor triple systems. We also show that we can associate a complex structure into these ([Formula: see text]-Freudenthal–Kantor triple systems. Further, we introduce the concept of Dynkin diagrams associated to such [Formula: see text]-Freudenthal–Kantor triple systems and the corresponding Lie (super) algebra construction.


2004 ◽  
Vol 16 (07) ◽  
pp. 823-849 ◽  
Author(s):  
T. SKRYPNYK

We construct a family of infinite-dimensional quasigraded Lie algebras, that could be viewed as deformation of the graded loop algebras and admit Kostant–Adler scheme. Using them we obtain new integrable hamiltonian systems admitting Lax-type representations with the spectral parameter.


2005 ◽  
Vol 287 (2) ◽  
pp. 351-380 ◽  
Author(s):  
Saeid Azam ◽  
Stephen Berman ◽  
Malihe Yousofzadeh

Sign in / Sign up

Export Citation Format

Share Document