Reflection of Detonation Wave from the Symmetry Plane within a Cylindrical Target for Controlled Thermonuclear Fusion

2021 ◽  
Vol 61 (10) ◽  
pp. 1682-1699
Author(s):  
K. V. Khishchenko ◽  
A. A. Charakhch’yan
2010 ◽  
Vol 180 (10) ◽  
pp. 1055 ◽  
Author(s):  
V.I. Krauz ◽  
Yu.V. Martynenko ◽  
N.Yu. Svechnikov ◽  
V.P. Smirnov ◽  
V.G. Stankevich ◽  
...  

1993 ◽  
Vol 82 (1-4) ◽  
pp. 577-594
Author(s):  
D. D�chs ◽  
T. Hellsten

2014 ◽  
Vol 33 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Alexander A. Charakhch'yan ◽  
Konstantin V. Khishchenko

AbstractThe one-dimensional problem on bilatiral irradiation by proton beams of the plane layer of condensed DT mixture with length 2H and density ρ0 ≤ 100ρs, where ρs is the fuel solid-state density at atmospheric pressure and temperature of 4 K, is considered. The proton kinetic energy is 1 MeV, the beam intensity is 1019 W/cm2 and duration is 50 ps. A mathematical model is based on the one-fluid two-temperature hydrodynamics with a wide-range equation of state of the fuel, electron and ion heat conduction, DT fusion reaction kinetics, self-radiation of plasma and plasma heating by α-particles. If the ignition occurs, a plane detonation wave, which is adjacent to the front of the rarefaction wave, appears. Upon reflection of this detonation wave from the symmetry plane, the flow with the linear velocity profile along the spatial variable x and with a weak dependence of the thermodynamic functions of x occurs. An appropriate solution of the equations of hydrodynamics is found analytically up to an arbitrary constant, which can be chosen so that the analytical solution describes with good accuracy the numerical one. The gain with respect to the energy of neutrons G ≈ 200 at Hρ0 ≈ 1 g/cm2, and G > 2000 at Hρ0 ≈ 5 g/cm2. To evaluate the ignition energy Eig of cylindrical targets, the quasi-1D model, limiting trajectories of α-particles by a cylinder of a given radius, is suggested. The model reproduces the known theoretical dependence Eig ~ ρ0−2 and gives Eig = 160 kJ for ρ0 = 100ρs ≈ 22 g/cm3.


2019 ◽  
pp. 1-28
Author(s):  
Aleksandr Aleksandrovich Belov ◽  
Nikolaj Nikolaevich Kalitkin ◽  
Oleg Igorevich Topor ◽  
Igor Alekseevich Fedorov

Sign in / Sign up

Export Citation Format

Share Document