The bithorax complex of Drosophila melanogaster as a model for studying specific long-distance interactions between enhancers and promoters

2015 ◽  
Vol 51 (5) ◽  
pp. 440-448 ◽  
Author(s):  
O. V. Kyrchanova ◽  
P. G. Georgiev
Genetics ◽  
1999 ◽  
Vol 153 (3) ◽  
pp. 1333-1356 ◽  
Author(s):  
Martin Muller ◽  
Kirsten Hagstrom ◽  
Henrik Gyurkovics ◽  
Vincenzo Pirrotta ◽  
Paul Schedl

Abstract In the studies reported here, we have examined the properties of the Mcp element from the Drosophila melanogaster bithorax complex (BX-C). We have found that sequences from the Mcp region of BX-C have properties characteristic of Polycomb response elements (PREs), and that they silence adjacent reporters by a mechanism that requires trans-interactions between two copies of the transgene. However, Mcp trans-regulatory interactions have several novel features. In contrast to classical transvection, homolog pairing does not seem to be required. Thus, trans-regulatory interactions can be observed not only between Mcp transgenes inserted at the same site, but also between Mcp transgenes inserted at distant sites on the same chromosomal arm, or even on different arms. Trans-regulation can even be observed between transgenes inserted on different chromosomes. A small 800-bp Mcp sequence is sufficient to mediate these long-distance trans-regulatory interactions. This small fragment has little silencing activity on its own and must be combined with other Polycomb-Group-responsive elements to function as a “pairing-sensitive” silencer. Finally, this pairing element can also mediate long-distance interactions between enhancers and promoters, activating mini-white expression.


2006 ◽  
Vol 38 (8) ◽  
pp. 931-935 ◽  
Author(s):  
Fabienne Cléard ◽  
Yuri Moshkin ◽  
François Karch ◽  
Robert K Maeda

Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 129-135
Author(s):  
Alfonso Martinez-Arias ◽  
Philip W. Ingham

Mutations of the segment polarity group in Drosophila melanogaster produce additional denticles with reversed polarity in every segment of the larval cuticle. We have investigated the effect of mutations in different elements of the bithorax complex on the segmental identity of these additional pattern elements. Our results suggest that they are derived, primarily, from the anterior compartment of each segment.


1994 ◽  
Vol 14 (9) ◽  
pp. 5645-5652
Author(s):  
B Shen ◽  
J Kim ◽  
D Dorsett

Insertion of the gypsy retrotransposon of Drosophila melanogaster into a gene control region can repress gene expression. The zinc finger protein (SUHW) encoded by the suppressor of Hairy-wing [su(Hw)] gene binds to gypsy and prevents gene enhancers from activating transcription. SUHW blocks an enhancer only when positioned between the enhancer and promoter. Although position dependent, SUHW enhancer blocking is distance independent. These properties indicate that SUHW does not interact with the transcription activator proteins that bind to enhancers. To explore if DNA distortions are involved in enhancer blocking, the ability of SUHW to alter DNA structure was examined in gel mobility assays. Indeed, SUHW induces an unusual change in the structure of the binding-site DNA. The change is not a directed DNA bend but correlates with loss of sequence-directed bends in the unbound DNA. The DNA distortion requires a SUHW protein domain not required for DNA binding, and mutant proteins that fail to alter DNA structure also fail to eliminate the sequence-directed bends. These results suggest that SUHW increases DNA flexibility. The DNA distortion is not sufficient to block enhancers, and therefore it is suggested that increased DNA flexibility may help SUHW interact and interfere with proteins that support long-distance enhancer-promoter interactions.


Development ◽  
1982 ◽  
Vol 71 (1) ◽  
pp. 41-61
Author(s):  
Eric S. Cole ◽  
John Palka

A detailed mapping and description of campaniform sensilla on the wing and haltere of Drosophila melanogaster is provided. Six types of sensilla are distinguished. Similarities in the pattern of their distribution on the dorsal and ventral surfaces of each appendage, as well as between the wing and haltere, are apparent. These data are used to assess the quality of homeotic transformation in several mutants of the bithorax complex in which the halteres are transformed into wings. Flies homozygous for abxbx3pbx produce a complete inventory of wing sensilla on the homeotic appendage. In abx, bx3 and bx3pbx homozygotes the transformation of haltere into wing is incomplete, and each mutant shows characteristic fields of haltere and wing sensilla. It appears that specific regions of the anterior haltere compartment require different combinations of mutant alleles to produce a distinct homeotic transformation. Furthermore, the pbx mutation appears to influence expression of the bx3 mutation within the anterior compartment.


Science ◽  
1983 ◽  
Vol 221 (4605) ◽  
pp. 23-29 ◽  
Author(s):  
W. Bender ◽  
M. Akam ◽  
F. Karch ◽  
P. A. Beachy ◽  
M. Peifer ◽  
...  

Genetics ◽  
1989 ◽  
Vol 121 (3) ◽  
pp. 517-525 ◽  
Author(s):  
A Shearn

Abstract Mutations in the ash-1 and ash-2 genes of Drosophila melanogaster cause a wide variety of homeotic transformations that are similar to the transformations caused by mutations in the trithorax gene. Based on this similar variety of transformations, it was hypothesized that these genes are members of a functionally related set. Three genetic tests were employed here to evaluate that hypothesis. The first test was to examine interactions of ash-1, ash-2 and trithorax mutations with each other. Double and triple heterozygotes of recessive lethal alleles express characteristic homeotic transformations. For example, double heterozygotes of a null allele of ash-1 and a deletion of trithorax have partial transformations of their first and third legs to second legs and of their halteres to wings. The penetrance of these transformations is reduced by a duplication of the bithorax complex. The second test was to examine interactions with a mutation in the female sterile (1) homeotic gene. The penetrance of the homeotic phenotype in progeny from mutant mothers is increased by heterozygosis for alleles of ash-1 or ash-2 as well as for trithorax alleles. The third test was to examine the interaction with a mutation of the Polycomb gene. The extra sex combs phenotype caused by heterozygosis for a deletion of Polycomb is suppressed by heterozygosis for ash-1, ash-2 or trithorax alleles. The fact that mutations in each of the three genes gave rise to similar results in all three tests represents substantial evidence that ash-1, ash-2 and trithorax are members of a functionally related set of genes.


Sign in / Sign up

Export Citation Format

Share Document