polycomb response elements
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikolay Postika ◽  
Paul Schedl ◽  
Pavel Georgiev ◽  
Olga Kyrchanova

AbstractThe autonomy of segment-specific regulatory domains in the Bithorax complex is conferred by boundary elements and associated Polycomb response elements (PREs). The Fab-6 boundary is located at the junction of the iab-5 and iab-6 domains. Previous studies mapped it to a nuclease hypersensitive region 1 (HS1), while the iab-6 PRE was mapped to a second hypersensitive region HS2 nearly 3 kb away. To analyze the role of HS1 and HS2 in boundary we generated deletions of HS1 or HS1 + HS2 that have attP site for boundary replacement experiments. The 1389 bp HS1 deletion can be rescued by a 529 bp core Fab-6 sequence that includes two CTCF sites. However, Fab-6 HS1 cannot rescue the HS1 + HS2 deletion or substitute for another BX-C boundary – Fab-7. For this it must be combined with a PRE, either Fab-7 HS3, or Fab-6 HS2. These findings suggest that the boundary function of Fab-6 HS1 must be bolstered by a second element that has PRE activity.


2020 ◽  
Author(s):  
Nikolay Postika ◽  
Paul Schedl ◽  
Pavel Georgiev ◽  
Olga Kyrchanova

Abstract The autonomy of segment-specific regulatory domains in the Bithorax complex is conferred by boundary elements and associated Polycomb response elements (PREs). The Fab-6 boundary is located at the junction of the iab-5 and iab-6 domains. Previous studies mapped it to a nuclease hypersensitive region 1 (HS1), while the iab-6 PRE was mapped to a second hypersensitive region HS2 nearly 3 kb away. To analyze the role of HS1 and HS2 in boundary we generated deletions of HS1 or HS1 + HS2 that have attP site for boundary replacement experiments. The 1389 bp HS1 deletion can be rescued by a 529 bp core Fab-6 sequence that includes two CTCF sites. However, Fab-6 HS1 cannot rescue the HS1 + HS2 deletion or substitute for another BX-C boundary – Fab-7. For this it must be combined with a PRE, either Fab-7 HS3, or Fab-6 HS2. These findings suggest that the boundary function of Fab-6 HS1 must be bolstered by an element that has PRE activity.


Genetics ◽  
2020 ◽  
Vol 216 (3) ◽  
pp. 689-700
Author(s):  
Sandip De ◽  
Natalie D. Gehred ◽  
Miki Fujioka ◽  
Fountane W. Chan ◽  
James B. Jaynes ◽  
...  

Polycomb group (PcG) proteins are an important group of transcriptional repressors that act by modifying chromatin. PcG target genes are covered by the repressive chromatin mark H3K27me3. Polycomb repressive complex 2 (PRC2) is a multiprotein complex that is responsible for generating H3K27me3. In Drosophila, PRC2 is recruited by Polycomb Response Elements (PREs) and then trimethylates flanking nucleosomes, spreading the H3K27me3 mark over large regions of the genome, the “Polycomb domains.” What defines the boundary of a Polycomb domain? There is experimental evidence that insulators, PolII, and active transcription can all form the boundaries of Polycomb domains. Here we divide the boundaries of larval Polycomb domains into six different categories. In one category, genes are transcribed toward the Polycomb domain, where active transcription is thought to stop the spreading of H3K27me3. In agreement with this, we show that introducing a transcriptional terminator into such a transcription unit causes an extension of the Polycomb domain. Additional data suggest that active transcription of a boundary gene may restrict the range of enhancer activity of a Polycomb-regulated gene.


2019 ◽  
Vol 47 (15) ◽  
pp. 7781-7797 ◽  
Author(s):  
Bjørn André Bredesen ◽  
Marc Rehmsmeier

Abstract Polycomb Response Elements (PREs) are cis-regulatory DNA elements that maintain gene transcription states through DNA replication and mitosis. PREs have little sequence similarity, but are enriched in a number of sequence motifs. Previous methods for modelling Drosophila melanogaster PRE sequences (PREdictor and EpiPredictor) have used a set of 7 motifs and a training set of 12 PREs and 16-23 non-PREs. Advances in experimental methods for mapping chromatin binding factors and modifications has led to the publication of several genome-wide sets of Polycomb targets. In addition to the seven motifs previously used, PREs are enriched in the GTGT motif, recently associated with the sequence-specific DNA binding protein Combgap. We investigated whether models trained on genome-wide Polycomb sites generalize to independent PREs when trained with control sequences generated by naive PRE models and including the GTGT motif. We also developed a new PRE predictor: SVM-MOCCA. Training PRE predictors with genome-wide experimental data improves generalization to independent data, and SVM-MOCCA predicts the majority of PREs in three independent experimental sets. We present 2908 candidate PREs enriched in sequence and chromatin signatures. 2412 of these are also enriched in H3K4me1, a mark of Trithorax activated chromatin, suggesting that PREs/TREs have a common sequence code.


2019 ◽  
Author(s):  
Morteza Khabiri ◽  
Peter L. Freddolino

AbstractThe Polycomb-group proteins (PcG) and Trithorax-group proteins (TrxG) are two major epigenetic regulators important for proper differentiation during development (1, 2). In Drosophila melanogaster (D. melanogaster), Polycomb response elements (PREs) are short segments of DNA with a high density of binding sites for transcription factors (TFs) that recruit PcG and TrxG proteins to chromatin. Each PRE has a different number of binding sites for PcG and TrxG, and these binding sites have different topological organizations. It is thus difficult to find general rules to discover the locations of PREs over the entire genome. We have developed a framework to predict the locations and roles of potential PRE regions over the entire D. melanogaster genome using machine learning algorithms. Using a combination of motif-based and simple sequence-based features, we were able to train a random forest (RF) model with very high performance in predicting active PRE regions. This model could distinguish potential PRE regions from non-PRE regions (precision and recall ~0.92 upon cross-validation). In the process, the model suggests that previously unrecognized TFs might contribute to PcG/TrxG recruitment at the PRE locations, as the presence of binding sites for those factors is strongly informative of active PREs. A secondary regression model provides information on features that further differentiate PREs into functional subclasses. Our findings provide both new predictions of 7887 potential PREs in the D. melanogaster genome, and new mechanistic insight into the set of DNA-associated proteins that may contribute to PcG recruitment and/or activity.


2018 ◽  
Author(s):  
Kami Ahmad ◽  
Amy E Spens

Patterned expression of many developmental genes is specified by transcription factor gene expression, but is thought to be refined by chromatin-mediated repression. Regulatory DNA sequences called Polycomb Response Elements (PREs) are required to repress some developmental target genes, and are widespread in genomes, suggesting that they broadly affect developmental programs. While PREs in transgenes can nucleate trimethylation on lysine 27 of the histone H3 tail (H3K27me3), none have been demonstrated to be necessary at endogenous chromatin domains. This failure is thought to be due to the fact that most endogenous H3K27me3 domains contain many PREs, and individual PREs may be redundant. In contrast to these ideas, we show here that PREs near the wing selector gene vestigial have distinctive roles at their endogenous locus, even though both PREs are repressors in transgenes. First, a PRE near the promoter is required for vestigial activation and not for repression. Second, only the distal PRE contributes to H3K27me3, but even removal of both PREs does not eliminate H3K27me3 across the vestigial domain. Thus, endogenous chromatin domains appear to be intrinsically marked by H3K27me3, and PREs appear required to enhance this chromatin modification to high levels at inactive genes.


2018 ◽  
Vol 115 (8) ◽  
pp. E1839-E1848 ◽  
Author(s):  
J. Lesley Brown ◽  
Ming-an Sun ◽  
Judith A. Kassis

Polycomb group (PcG) proteins maintain the silenced state of key developmental genes in animals, but how these proteins are recruited to specific regions of the genome is still poorly understood. In Drosophila, PcG proteins are recruited to Polycomb response elements (PREs) that include combinations of sites for sequence specific DNA binding “PcG recruiters,” including Pho, Cg, and Spps. To understand their roles in PcG recruitment, we compared Pho-, Cg-, and Spps-binding sites against H3K27me3 and key PcG proteins by ChIP-seq in wild-type and mutant third instar larvae. H3K27me3 in canonical Polycomb domains is decreased after the reduction of any recruiter. Reduction of Spps and Pho, but not Cg, causes the redistribution of H3K27me3 to heterochromatin. Regions with dramatically depleted H3K27me3 after Spps knockout are usually accompanied by decreased Pho binding, suggesting their cooperative binding. PcG recruiters, the PRC2 component E(z), and the PRC1 components Psc and Ph cobind thousands of active genes outside of H3K27me3 domains. This study demonstrates the importance of distinct PcG recruiters for the establishment of unique Polycomb domains. Different PcG recruiters can act both cooperatively and independently at specific PcG target genes, highlighting the complexity and diversity of PcG recruitment mechanisms.


Sign in / Sign up

Export Citation Format

Share Document