The mechanisms determining bristle pattern in Drosophila melanogaster

2015 ◽  
Vol 46 (3) ◽  
pp. 99-110 ◽  
Author(s):  
T. A. Bukharina ◽  
D. P. Furman
Development ◽  
1993 ◽  
Vol 118 (1) ◽  
pp. 9-20 ◽  
Author(s):  
T.V. Orenic ◽  
L.I. Held ◽  
S.W. Paddock ◽  
S.B. Carroll

The spatial organization of Drosophila melanogaster epidermal structures in embryos and adults constitutes a classic model system for understanding how the two dimensional arrangement of particular cell types is generated. For example, the legs of the Drosophila melanogaster adult are covered with bristles, which in most segments are arranged in longitudinal rows. Here we elucidate the key roles of two regulatory genes, hairy and achaete, in setting up this periodic bristle pattern. We show that achaete is expressed during pupal leg development in a dynamic pattern which changes, by approximately 6 hours after puparium formation, into narrow longitudinal stripes of 3–4 cells in width, each of which represents a field of cells (proneural field) from which bristle precursor cells are selected. This pattern of gene expression foreshadows the adult bristle pattern and is established in part through the function of the hairy gene, which also functions in patterning other adult sense organs. In pupal legs, hairy is expressed in four longitudinal stripes, located between every other pair of achaete stripes. We show that in the absence of hairy function achaete expression expands into the interstripe regions that normally express hairy, fusing the two achaete stripes and resulting in extra-wide stripes of achaete expression. This misexpression of achaete, in turn, alters the fields of potential bristle precursor cells which leads to the misalignment of bristle rows in the adult. This function of hairy in patterning achaete expression is distinct from that in the wing in which hairy suppresses late expression of achaete but has no effect on the initial patterning of achaete expression. Thus, the leg bristle pattern is apparently regulated at two levels: a global regulation of the hairy and achaete expression patterns which partitions the leg epidermis into striped zones (this study) and a local regulation (inferred from other studies on the selection of neural precursor cells) that involves refinement steps which may control the alignment and spacing of bristle cells within these zones.


2017 ◽  
Vol 10 (4) ◽  
pp. 142-147 ◽  
Author(s):  
Saurabh Sarkar ◽  
Sumedha Roy

Abstract Pesticides are one of the major sources of environmental toxicity and contamination. This study reports potential of lepidopteran insecticide formulation, named Flubendiamide, in altering compound eye architecture and bristle pattern orientation for four consecutive generations (P, F1, F2 and F3) in a non-target diptera, Drosophila melanogaster Meigen (Diptera: Drosophilidae). The concentrations of the insecticide formulation selected for treatment of Drosophila (50 and 100 μg/mL) were in accordance with practiced Indian field doses (50 μg/mL for rice and 100 μg/mL for cotton). This study showed trans-generational insecticide-induced changes in the morphology of the compound eyes of the non-target insect D. melanogaster.


2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document