Influence of an External Circuit on the Plasma Parameters in the Channel of the Radio-Frequency Accelerator with a Closed Electron Drift

2021 ◽  
Vol 47 (10) ◽  
pp. 1075-1079
Author(s):  
G. V. Shvydky ◽  
I. I. Zadiriev ◽  
E. A. Kralkina ◽  
K. V. Vavilin
2021 ◽  
pp. 24-30

The axial distribution of the plasma potential, concentration and temperature of electrons in an RF capacitive plasma source with the geometry of an accelerator with a closed electron drift is experimentally investigated in this work. Two cases of the external electrical discharge circuit are considered. In the first case, the electrodes were closed by direct current, in the second, they were opened. It is shown that direct current closure of the electrodes leads to a significant increase in the plasma potential and electron concentration. In a number of cases, local maxima of temperature and plasma density are observed near the electrodes, which can be associated with the occurrence of azimuthal electron drift in crossed electric and magnetic fields.


2021 ◽  
pp. 24-30

The axial distribution of the plasma potential, concentration and temperature of electrons in an RF capacitive plasma source with the geometry of an accelerator with a closed electron drift is experimentally investigated in this work. Two cases of the external electrical discharge circuit are considered. In the first case, the electrodes were closed by direct current, in the second, they were opened. It is shown that direct current closure of the electrodes leads to a significant increase in the plasma potential and electron concentration. In a number of cases, local maxima of temperature and plasma density are observed near the electrodes, which can be associated with the occurrence of azimuthal electron drift in crossed electric and magnetic fields.


Author(s):  
Boris A. Sokolov ◽  
Pavel A. Shcherbina ◽  
Ivan B. Sishko ◽  
Aleksandr V. Shipovskiy Aleksandr ◽  
Aleksandr A. Lyapin ◽  
...  

The paper demonstrates the feasibility of using iodine as propellant for thrusters with closed electron drift and its economic viability. It describes a test setup for running experiments. It provides the results of experimental studies of the stationary plasma thruster using iodine as its propellant with xenon gas-passage hollow cathode, as well as of the operational mode of the thruster where a mixture of xenon and iodine is used. During tests gas dynamic and electrical properties of the thruster were analyzed. Thermal conditions in the iodine storage and supply system were studied. Conclusions were drawn on how the test object could be improved and upgraded. The paper describes the option to use a thermionic non-flow cathode as the compensator cathode for the operation of the iodine thruster. The paper provides the results of an experimental study of the prototype non-flow compensator cathode in diode mode. Based on the results of the studies an experimental facility was built for testing a thruster with non-flow compensator cathode. Key words: cathode, compensator cathode, thruster with closed electron drift, stationary plasma thruster, iodine.


2001 ◽  
Author(s):  
Y. Raitses ◽  
D. Staack ◽  
A. Smirnov ◽  
A. Litvak ◽  
L. Dorf ◽  
...  

2011 ◽  
Vol 78 (2) ◽  
pp. 165-174 ◽  
Author(s):  
C. L. XAPLANTERIS ◽  
E. D. FILIPPAKI ◽  
I. S. MISTAKIDIS ◽  
L. C. XAPLANTERIS

AbstractMany experimental data along with their theoretical interpretations on the rf low-temperature cylindrical plasma have been issued until today. Our Laboratory has contributed to that research by publishing results and interpretative mathematical models. With the present paper, two issues are being examined; firstly, the estimation of electron drift caused by the rf field gradient, which is the initial reason for the plasma behaviour, and secondly, many new experimental results, especially the electron-neutral collision frequency effect on the other plasma parameters and quantities. Up till now, only the plasma steady state was taken into consideration when a theoretical elaboration was carried out, regardless of the cause and the effect. This indicates the plasma's complicated and chaotic configuration and the need to simplify the problem. In the present work, a classification about the causality of the phenomena is attempted; the rf field gradient electron drift is proved to be the initial cause.


2007 ◽  
Vol 40 (22) ◽  
pp. 7008-7018 ◽  
Author(s):  
J Schulze ◽  
T Gans ◽  
D O'Connell ◽  
U Czarnetzki ◽  
A R Ellingboe ◽  
...  

1992 ◽  
Vol 72 (7) ◽  
pp. 2632-2637 ◽  
Author(s):  
Jen‐Shih Chang ◽  
Y. Ichikawa ◽  
R. M. Hobson ◽  
S. Matsumura ◽  
S. Teii

2001 ◽  
Vol 70 (7) ◽  
pp. 1966-1970 ◽  
Author(s):  
Abhimanyu Mishra ◽  
C. U. S. Patnaik ◽  
P. Misra

1999 ◽  
Vol 77 (2) ◽  
pp. 113-126
Author(s):  
J LV Lewandowski

The radial structure of electron drift waves in a low-pressure tokamak plasma is presented. The ions are cold and an electrostatic approximation for the fluctuating potential is used. It is shown that the problem of the radial structure of drift waves in toroidal geometry is amenable to a two-step solution; in first approximation, the radial structure of the mode is neglected and the problem to be solved is the usual eigenmode equation along the (extended) poloidal angle; in second approximation, the mode amplitude is expanded in ascending powers of the parameter (k⊥Ln)-1/2 , where k⊥ is the magnitude of the lowest-order wavevector and Ln is the radial density scale length. It is shown that the radial structure of drift-type modes can depend strongly on the magnetic shear and the scalar magnetic curvature. Numerical calculations for plasma parameters relevant to the edge region of medium-size tokamaks are presented. PACS Nos.: 52.35Kt, 52.30Jb, and 52.35Ra


Sign in / Sign up

Export Citation Format

Share Document