capacitively coupled
Recently Published Documents


TOTAL DOCUMENTS

2018
(FIVE YEARS 325)

H-INDEX

63
(FIVE YEARS 6)

Author(s):  
Jiamao Gao ◽  
Shimin Yu ◽  
Hao Wu ◽  
Yu Wang ◽  
Zhijiang Wang ◽  
...  

Abstract Matching networks are of vital importance for capacitively coupled plasmas to maximize the power transferred to the plasma discharge. The nonlinear interaction between the external circuit and plasma has to be considered to design suitable matching networks. To study the effect of the matching circuit, we coupled PIC/MC model and nonlinear circuit equations based on Kirchhoff’s laws, in a fully nonlinear and self-consistent way. The single-frequency capacitively coupled discharge with ”L”-Type matching networks are simulated. Fully self-consistently results of circuit and plasma parameters are presented and then power absorbed by the plasma and efficiency are calculated. With the tune of the matching network, the efficiency can reach 28.7 %, leading to higher potential as well as higher electron density at fixed source voltage. Besides, only very small components of the third harmonics are found in the plasma voltage and current while surface charge densities have multiple harmonics on account of the strong plasma nonlinearity. Finally, the effects of matching capacitors on discharge are analyzed, results show that smaller Cm1 and Cm2 of 500 pF to 1000 pF may be a proper choice for better matching, resulting in higher voltage across the CCP, and thus higher electron density and power absorption efficiency are obtained.


Author(s):  
Wan Dong ◽  
Yi Fan Zhang ◽  
ZhongLing Dai ◽  
Julian Schulze ◽  
Yuan-Hong Song ◽  
...  

Abstract Radio frequency capacitively coupled plasmas (RF CCPs) sustained in fluorocarbon gases or their mixtures with argon are widely used in plasma-enhanced etching. In this work, we conduct studies on instabilities in a capacitive CF4/Ar (1:9) plasma driven at 13.56 MHz at a pressure of 150 mTorr, by using a one-dimensional fluid/Monte-Carlo (MC) hybrid model. Fluctuations are observed in densities and fluxes of charged particles, electric field, as well as electron impact reaction rates, especially in the bulk. As the gap distance between the electrodes increases from 2.8 cm to 3.8 cm, the fluctuation amplitudes become smaller gradually and the instability period gets longer, as the driving power density ranges from 250 to 300 W/m2. The instabilities are on a time scale of 16-20 RF periods, much shorter than those millisecond periodic instabilities observed experimentally owing to attachment/detachment in electronegative plasmas. At smaller electrode gap, a positive feedback to the instability generation is induced by the enhanced bulk electric field in the highly electronegative mode, by which the electron temperature keeps strongly oscillating. Electrons at high energy are mostly consumed by ionization rather than attachment process, making the electron density increase and overshoot to a much higher value. And then, the discharge becomes weakly electronegative and the bulk electric field becomes weak gradually, resulting in the continuous decrease of the electron density as the electron temperature keeps at a much lower mean value. Until the electron density attains its minimum value again, the instability cycle is formed. The ionization of Ar metastables and dissociative attachment of CF4 are noticed to play minor roles compared with the Ar ionization and excitation at this stage in this mixture discharge. The variations of electron outflow from and negative ion inflow to the discharge center need to be taken into account in the electron density fluctuations, apart from the corresponding electron impact reaction rates. We also notice more than 20% change of the Ar+ ion flux to the powered electrode and about 16% difference in the etching rate due to the instabilities in the case of 2.8 cm gap distance, which is worthy of more attention for improvement of etching technology.


The Analyst ◽  
2022 ◽  
Author(s):  
Weiwen Liu ◽  
Ziqi Liang ◽  
Yuanyu Wang ◽  
Jun Cao ◽  
Qiang Zhang ◽  
...  

Abstract: Sensing the electrolyte solution or aqueous-organic mixture has great interest to chemical separation, pharmaceutical engineering, bioprocess and biochemical experiments etc. However, rare report was presented on online contactless sensor...


2021 ◽  
Author(s):  
Shuo Wang ◽  
Ning Zhang ◽  
Shun-xin Zhang ◽  
Miao Tian ◽  
Ya-wen Cai ◽  
...  

Abstract Using a dusty plasma ratchet, one can realize the rectification of charged dust particle in a plasma. To obtain the ratchet potential dominating the rectification, here, we perform quantitative simulations based on a two-dimensional fluid model of capacitively coupled plasma. Plasma parameters are firstly calculated in two typical cross sections of the dusty plasma ratchet which cut vertically the saw channel at different azimuthal positions. The balance positions of charged dust particle in the two cross sections then can be found exactly. The electric potentials at the two balance positions have different values. Using interpolation in term of a double-sine function from previous experimental measurement, an asymmetrical ratchet potential along the saw channel is finally obtained. The asymmetrical orientation of the ratchet potential depends on discharge conditions. Quantitative simulations further reproduce our previous experimental phenomena such as the rectification of dust particle in the dusty plasma ratchet.


Author(s):  
Toshiaki Makabe

Abstract In a high-frequency capacitively coupled plasma (HF-CCP), few studies have been carried out for the transport of charged particles in the active bulk plasma with high electronegativity. The electric field E(t), specifically, time-varying reduced field E(t)/Ng provides key knowledge about the characteristics of collisional bulk plasma. Numerical modeling is the only method for estimating E(t)/Ng, while a limited number of collision cross sections and related transport parameters are available. Under these circumstances, we discuss how to estimate the reduced field E(t)/Ng, i.e., E(t) in active bulk plasma with high electronegativity in HF-CCP through investigation of the correlation between the DC-critical reduced field (E/Ng)Crit: and the HF-effective reduced field (E(t)/Ng)eff . Our previous discussion on the correlation is validated by increasing the number of results of (E(t)/Ng)eff . The relation between the electronegativity and the ionization degree is derived from the sustainable condition in the bulk plasma.


Author(s):  
Sven Dorsch ◽  
Sofia Fahlvik ◽  
Adam Burke

Abstract Conversion of temperature gradients to charge currents in quantum dot systems enables probing various concepts from highly efficient energy harvesting and fundamental thermodynamics to spectroscopic possibilities complementary to conventional bias device characterization. In this work, we present a proof-of-concept study of a device architecture where bottom-gates are capacitively coupled to an InAs nanowire and double function as local joule heaters. The device design combines the ability to heat locally at different locations on the device with the electrostatic definition of various quantum dot and barrier configurations. We demonstrate the versatility of this combined gating- and heating approach by studying, as a function of the heater location and bias, the Seebeck effect across the barrier-free nanowire, fit thermocurrents through quantum dots for thermometry and detect the phonon energy using a serial double quantum dot. The results indicate symmetric heating effects when the device is heated with different gates and we present detection schemes for the electronic and phononic heat transfer contribution across the nanowire. Based on this proof-of-principle work, we propose a variety of future experiments.


2021 ◽  
Vol 28 (12) ◽  
pp. 123505
Author(s):  
Shali Yang ◽  
Tianxiang Zhang ◽  
Hanlei Lin ◽  
Hao Wu ◽  
Qiang Zhang

Sign in / Sign up

Export Citation Format

Share Document