Relation between the Poynting and Group Velocity Vectors of Electromagnetic Waves in a Bi-Gyrotropic Medium

2021 ◽  
Vol 66 (7) ◽  
pp. 834-843
Author(s):  
E. H. Lock ◽  
A. V. Lugovskoi ◽  
S. V. Gerus
2010 ◽  
Vol 36 (13) ◽  
pp. 1129-1139
Author(s):  
V. P. Makarov ◽  
A. A. Rukhadze ◽  
A. A. Samokhin

Author(s):  
С.В. Гришин ◽  
А.В. Богомолова ◽  
С.А. Никитов

The paper presents the results of a theoretical study of the dispersion characteristics of electromagnetic waves (EMW) existing in a transversely magnetized antiferromagnetic (AFM) semiconductor with loss. An AFM semiconductor is an infinite bi-gyrotropic medium, the effective material parameters of which are twice negative in several frequency ranges. It was found that these frequency regions are in the terahertz range and there are four backward EMEs in them, two of which are TE waves, and the other two are TM waves.


2021 ◽  
Vol 7 (4) ◽  
pp. 70-74
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


2021 ◽  
Vol 7 (4) ◽  
pp. 67-70
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


1986 ◽  
Vol 45 (2) ◽  
pp. 877-881
Author(s):  
A. A. Afonin ◽  
A. N. Godlevskaya ◽  
V. N. Kapshai ◽  
A. N. Serdyukov

Sign in / Sign up

Export Citation Format

Share Document