Group velocity of large amplitude electromagnetic waves in a plasma

1994 ◽  
Vol 72 (4) ◽  
pp. 490-493 ◽  
Author(s):  
C. D. Decker ◽  
W. B. Mori
1995 ◽  
Vol 51 (2) ◽  
pp. 1364-1375 ◽  
Author(s):  
C. D. Decker ◽  
W. B. Mori

2010 ◽  
Vol 36 (13) ◽  
pp. 1129-1139
Author(s):  
V. P. Makarov ◽  
A. A. Rukhadze ◽  
A. A. Samokhin

2021 ◽  
pp. 39-42
Author(s):  
V.A. Buts ◽  
A.G. Zagorodny

The results of studying the dynamics of particles in the fields of large-amplitude transverse electromagnetic waves are presented. The main attention is paid to the description of the found conditions, under which the effective transfer of wave energy to charged particles in vacuum is possible.


2021 ◽  
Vol 7 (4) ◽  
pp. 70-74
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


2021 ◽  
Vol 7 (4) ◽  
pp. 67-70
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


2000 ◽  
Vol 64 (4) ◽  
pp. 353-357 ◽  
Author(s):  
L. STENFLO ◽  
P. K. SHUKLA

Comprehensive comments on the theory of stimulated scattering instabilities of high-frequency electromagnetic waves in magnetized plasmas are presented. It is shown that our general dispersion relations are appropriate for deducing valuable information regarding the growth rates of scattering instabilities and the long-term evolution of modulationally unstable waves in space and laboratory plasmas as well as in astrophysical settings.


Sign in / Sign up

Export Citation Format

Share Document