wave phenomena
Recently Published Documents


TOTAL DOCUMENTS

732
(FIVE YEARS 105)

H-INDEX

39
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Yue Li ◽  
Ziheng Zhou ◽  
Yijing He ◽  
Hao Li

This Element introduces the exotic wave phenomena arising from the extremely small optical refractive index, and sheds light on the underlying mechanisms, with a primary focus on the basic concepts and fundamental wave physics. The authors reveal the exciting applications of ENZ metamaterials, which have profound impacts over a wide range of fields of science and technology. The sections are organized as follows: in Section 2, the authors demonstrate the extraordinary wave properties in ENZ metamaterials, analyzing the unique wave dynamics and the resulting effects. Section 3 is dedicated to introducing various realization methods of the ENZ metamaterials with periodic and non-periodic styles. The applications of ENZ metamaterials are discussed in Sections 4 and 5, from the perspectives of microwave engineering, optics, and quantum physics. The authors close in Section 6 by presenting an outlook on the development of ENZ metamaterials and discussing the key challenges addressed in future works.


2021 ◽  
Vol 7 (4) ◽  
pp. 70-74
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


2021 ◽  
Vol 7 (4) ◽  
pp. 67-70
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Seungkyun Park ◽  
Ikbeom Lee ◽  
Jungmin Kim ◽  
Namkyoo Park ◽  
Sunkyu Yu

Abstract The independent tailoring of wave quantities lays the foundation for controlling wave phenomena and designing wave devices. The concept of isospectrality, which suggests the existence of systems that provide identical spectra, has inspired a novel route to the spectrum-preserved engineering of wave–matter interactions in photonics, acoustics, and quantum mechanics. Recently, in photonics, constructing isospectral optical structures has become an emerging research topic to handle the intricate spectral responses of the systems composed of many-particles or inhomogeneous materials. The cornerstones in this field have stimulated the realization of non-Hermitian systems with real eigenspectra, one-dimensional structures exhibiting higher-dimensional physics, and novel engineering methodologies for broadband devices such as phase-matched multiplexers and multimodal lasing platforms. Here we review recent achievements based on isospectrality in photonics. We outline milestones in two different subfields of supersymmetric photonics and interdimensional isospectrality. We illustrate that isospectrality has paved the way for the independent control of wave quantities, showing great potential for the analytical and platform-transparent design of photonic systems with complex structures and materials.


2021 ◽  
Vol 2140 (1) ◽  
pp. 012024
Author(s):  
V V Fisanov

Abstract The problem of reflection and refraction of a plane monochromatic wave is considered in the most general formulation for a flat interface of two isotropic pseudo-passive media using the vector covariant approach of F.I. Fedorov. The generalized Fresnel coefficients for the perpendicular and parallel polarizations turn out to be complex values, except for cases when the phase difference of the permeabilities of the two media is zero or 180 degrees. The critical Brewster angles also turn out to be complex quantities. The phenomenon of total reflection, in contrast to passive transparent media, is not realized in pseudo-passive media. The energy coefficients of reflection and transmission are calculated and analyzed. Restrictions imposed on the values of the material parameters of the problem are indicated, which should be taken into account when studying refractive wave phenomena involving pseudo-passive metamaterials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
François Legrand ◽  
Benoît Gérardin ◽  
François Bruno ◽  
Jérôme Laurent ◽  
Fabrice Lemoult ◽  
...  

AbstractWe report on experimental and numerical implementations of devices based on the negative refraction of elastic guided waves, the so-called Lamb waves. Consisting in plates of varying thickness, these devices rely on the concept of complementary media, where a particular layout of negative index media can cloak an object with its anti-object or trap waves around a negative corner. The diffraction cancellation operated by negative refraction is investigated by means of laser ultrasound experiments. However, unlike original theoretical predictions, these intriguing wave phenomena remain, nevertheless, limited to the propagating component of the wave-field. To go beyond the diffraction limit, negative refraction is combined with the concept of metalens, a device converting the evanescent components of an object into propagating waves. The transport of an evanescent wave-field is then possible from an object plane to a far-field imaging plane. Twenty years after Pendry’s initial proposal, this work thus paves the way towards an elastic superlens.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Florian Willomitzer ◽  
Prasanna V. Rangarajan ◽  
Fengqiang Li ◽  
Muralidhar M. Balaji ◽  
Marc P. Christensen ◽  
...  

AbstractThe presence of a scattering medium in the imaging path between an object and an observer is known to severely limit the visual acuity of the imaging system. We present an approach to circumvent the deleterious effects of scattering, by exploiting spectral correlations in scattered wavefronts. Our Synthetic Wavelength Holography (SWH) method is able to recover a holographic representation of hidden targets with sub-mm resolution over a nearly hemispheric angular field of view. The complete object field is recorded within 46 ms, by monitoring the scattered light return in a probe area smaller than 6 cm × 6 cm. This unique combination of attributes opens up a plethora of new Non-Line-of-Sight imaging applications ranging from medical imaging and forensics, to early-warning navigation systems and reconnaissance. Adapting the findings of this work to other wave phenomena will help unlock a wider gamut of applications beyond those envisioned in this paper.


2021 ◽  
Vol 2072 (1) ◽  
pp. 012003
Author(s):  
U Hasanah ◽  
S R Pudjaprasetya

Abstract In this research free surface motion governed by the shallow water equations is considered. A numerical scheme based on the finite element method, which is incorporated in the open source FreeFEM, was used to simulate several wave phenomena. By carefully setting the corresponding initial condition as well as boundary conditions, several numerical computations were conducted. Numerical simulations presented here are standing wave in a closed basin, progressive wave over a flat bottom, as well as wave shoaling over a decreasing depth and wave refraction. In all cases above, the existing analytical formula are used to validate the numerical results. These computations suggest that explicit-implicit scheme is appropriate for varying water wave simulations.


Sign in / Sign up

Export Citation Format

Share Document