broadband pulse
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 7 (4) ◽  
pp. 70-74
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


2021 ◽  
Vol 7 (4) ◽  
pp. 67-70
Author(s):  
Anatol Guglielmi ◽  
Boris Klain ◽  
Alexander Potapov

The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012157
Author(s):  
Odysseas Tsilipakos ◽  
Lei Zhang ◽  
Maria Kafesaki ◽  
Costas M. Soukoulis ◽  
Thomas Koschny

Abstract We propose a microwave realization of a metasurface that can delay broadband pulses without distortion in reflection. In order to obtain large and broadband pulse delay, we harness the synergetic phase delay of five sharply-resonant meta-atoms. More specifically, three electric-LC and two split ring resonators, supporting electric and magnetic dipole resonances, respectively, are combined in a subwavelength unit cell. The resonances are spectrally interleaved and specifically designed to provide a spectrally-constant reflection amplitude and group delay according to the prescription in [ACS Photonics 5, 1101, 2018]. The designed metasurface is electrically ultrathin (λ0/19), since it relies on resonant phase delay exclusively, instead of phase accumulation via propagation. We show delay of 700-MHz Gaussian pulses centred at 11 GHz by 1.9 ns, corresponding to approximately 21 carrier cycles. Our results highlight the practical potential of metasurfaces for broadband dispersion control applications.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 140
Author(s):  
Yuqi Jin ◽  
Mi Zhou ◽  
Tae-Youl Choi ◽  
Arup Neogi

In this study, we demonstrated a thermally tunable acoustic beam splitter using a poly(vinyl alcohol) poly(N-isopropylacrylamide) hydrogel (PVA-pNIPAM). The nature of PVA-pNIPAM hydrogel offers exceptional temperature-dependent physical properties due to its phase transition around its lower critical solution temperature. The acoustic impedance of the hydrogel can be tuned below, above, or matched to that of water by changing the environmental temperature. An acoustic wave propagating in water can be split into transmitted and reflected components by the PVA-pNIPAM hydrogel slab on varying its angle of incidence. The intensity ratio between the reflected and the transmitted componence can be adjusted by tuning the temperature of the medium. The acoustic beam can be entirely reflected at a temperature corresponding to the matched impedance between hydrogel and water. The beam-splitting behavior was observed for acoustic waves from both a monochromatic wave and broadband pulse source. In addition, the phase of beam split pulses can be reversed by selecting the hydrogel’s operating temperature.


ACS Photonics ◽  
2021 ◽  
Author(s):  
Odysseas Tsilipakos ◽  
Lei Zhang ◽  
Maria Kafesaki ◽  
Costas M. Soukoulis ◽  
Thomas Koschny

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muhammed Veli ◽  
Deniz Mengu ◽  
Nezih T. Yardimci ◽  
Yi Luo ◽  
Jingxi Li ◽  
...  

AbstractRecent advances in deep learning have been providing non-intuitive solutions to various inverse problems in optics. At the intersection of machine learning and optics, diffractive networks merge wave-optics with deep learning to design task-specific elements to all-optically perform various tasks such as object classification and machine vision. Here, we present a diffractive network, which is used to shape an arbitrary broadband pulse into a desired optical waveform, forming a compact and passive pulse engineering system. We demonstrate the synthesis of various different pulses by designing diffractive layers that collectively engineer the temporal waveform of an input terahertz pulse. Our results demonstrate direct pulse shaping in terahertz spectrum, where the amplitude and phase of the input wavelengths are independently controlled through a passive diffractive device, without the need for an external pump. Furthermore, a physical transfer learning approach is presented to illustrate pulse-width tunability by replacing part of an existing network with newly trained diffractive layers, demonstrating its modularity. This learning-based diffractive pulse engineering framework can find broad applications in e.g., communications, ultra-fast imaging and spectroscopy.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 125
Author(s):  
Yuqi Jin ◽  
Yurii Zubov ◽  
Teng Yang ◽  
Tae-Youl Choi ◽  
Arkadii Krokhin ◽  
...  

An acoustic metamaterial superlattice is used for the spatial and spectral deconvolution of a broadband acoustic pulse into narrowband signals with different central frequencies. The operating frequency range is located on the second transmission band of the superlattice. The decomposition of the broadband pulse was achieved by the frequency-dependent refraction angle in the superlattice. The refracted angle within the acoustic superlattice was larger at higher operating frequency and verified by numerical calculated and experimental mapped sound fields between the layers. The spatial dispersion and the spectral decomposition of a broadband pulse were studied using lateral position-dependent frequency spectra experimentally with and without the superlattice structure along the direction of the propagating acoustic wave. In the absence of the superlattice, the acoustic propagation was influenced by the usual divergence of the beam, and the frequency spectrum was unaffected. The decomposition of the broadband wave in the superlattice’s presence was measured by two-dimensional spatial mapping of the acoustic spectra along the superlattice’s in-plane direction to characterize the propagation of the beam through the crystal. About 80% of the frequency range of the second transmission band showed exceptional performance on decomposition.


Sign in / Sign up

Export Citation Format

Share Document