On integral representations of correct restrictions and regular extensions of differential operators

2010 ◽  
Vol 81 (1) ◽  
pp. 94-96 ◽  
Author(s):  
T. Sh. Kal’menov ◽  
B. E. Kanguzhin ◽  
B. D. Koshanov
2007 ◽  
Vol 14 (3) ◽  
pp. 543-564
Author(s):  
Yuri G. Reshetnyak

Abstract In the space , 𝑛-dimensional surfaces are considered having the parametrizations which are functions of the Sobolev class with 𝑝 > 𝑛. The first and the second fundamental tensor are defined. The Peterson–Codazzi equations for such functions are understood in some generalized sense. It is proved that if the first and the second fundamental tensor of one surface are close to the first and, respectively, to the second fundamental tensor of the other surface, then these surfaces will be close up to the motion of the space . A difference between the fundamental tensors and the nearness of the surfaces are measured with the help of suitable 𝑊-norms. The proofs are based on a generalization of Frobenius' theorem about completely integrable systems of the differential equations which was proved by Yu. E. Borovskiĭ. The integral representations of functions by differential operators with complete integrability condition are used, which were elaborated by the author in his other works.


2016 ◽  
Vol 24 ◽  
pp. 58
Author(s):  
O.V. Lopotko

We obtain integral representations for positive definite functions of one variable, when kernels $K(x,y)$ are positive definite. The proof is based on the spectral theory of differential operators of fourth order.


Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.


Sign in / Sign up

Export Citation Format

Share Document