scholarly journals Patient self-demonstration of the anterior drawer test in an ACL deficient knee

2015 ◽  
Vol 2015 (jan23 2) ◽  
pp. bcr2014207516-bcr2014207516
Author(s):  
P. Ellanti ◽  
K. J. Mulhall
2018 ◽  
Vol 32 (10) ◽  
pp. 960-965
Author(s):  
Mohamed Omar ◽  
Yousif Al Saiegh ◽  
Emmanouil Liodakis ◽  
Timo Stuebig ◽  
Daniel Guenther ◽  
...  

AbstractWe aimed to investigate how increased or decreased femoral antetorsion would affect the biomechanics of the knee in an anterior cruciate ligament (ACL)-deficient cadaveric model. We hypothesized that external or internal rotation of the distal femur, achieved through a femoral osteotomy, would affect the magnitude of tibiofemoral translation and rotation. Navigated measurements of tibiofemoral translation and rotation during the anterior drawer, Lachman, and pivot shift tests were performed on six whole-body cadaveric specimens in each of the following four conditions: native, ACL-deficient knee, ACL-deficient knee and 20-degree internal distal femur rotation, and ACL-deficient knee and 20-degree external distal femur rotation. Increased femoral antetorsion significantly reduced anterior tibial translation in the ACL-deficient knee during the anterior drawer, Lachman, and pivot shift tests (p < 0.05). Conversely, decreasing femoral antetorsion resulted in an increase in anterior tibial translation in the anterior drawer (nonsignificant), Lachman (p < 0.05), and pivot shift (p < 0.05) tests. Internally rotating the distal femur significantly reduced the magnitude of tibial rotation during the pivot shift test in the ACL-deficient knee (p < 0.05), whereas external rotation of the distal femur significantly increased tibial rotation (p < 0.05). The magnitude of femoral antetorsion affects tibiofemoral translation in an ACL-deficient cadaveric mode. Internally rotating the distal femur 20 degrees reduced the magnitude of tibial translation and rotation similar to that of the native knee, whereas externally rotating the distal femur aggravated translational and rotational instability.


Author(s):  
Eleonor Svantesson ◽  
Eric Hamrin Senorski ◽  
Julia Mårtensson ◽  
Stefano Zaffagnini ◽  
Ryosuke Kuroda ◽  
...  

ObjectiveTo determine the relationship between preoperative static knee joint laxity and non-invasive quantitative pivot shift (QPS) in patients with anterior cruciate ligament (ACL) rupture.MethodsPatients with an ACL injury participating in a multicentre trial were analysed if they had complete preoperative data on the following laxity tests: the rolimeter, the KT-1000 (134 N and manual maximum force), the Lachman, the anterior drawer and QPS. The QPS was assessed via a non-invasive inertial sensor system and an image analysis system for tibial acceleration and lateral tibial translation, respectively. Awake examination and examination under anaesthesia (EUA) were performed. Correlation between absolute values of static laxity and the QPS for each leg was assessed by Spearman’s rho. The Lachman and the anterior drawer were dichotomised into low- and high-grade, and differences between the groups in terms of continuous values of QPS were assessed.ResultsA total of 58 patients were included (41.4% women, mean age 27.1±9.8 years). Awake static laxity and QPS acceleration were negatively correlated in the ACL-deficient knee, meaning that a greater acceleration correlated to a lesser static tibial translation, and vice versa. The mean QPS acceleration correlated with the static tests as follows: the rolimeter r=−0.30 (P=0.024), the KT-1000 134 N r=−0.25 (P=0.06) and the KT-1000 manual maximum r=−0.37 (P=0.004). A negative correlation between awake QPS acceleration and the static tests was also shown for the non-involved knee. Patients with a high-grade Lachman’s test in the EUA had significantly greater QPS acceleration (P=0.0002) and QPS translation (P<0.001) compared with patients with a low-grade. The corresponding analysis for the anterior drawer showed a significantly greater QPS translation in the high-grade group (P=0.01), while no differences were found in the QPS acceleration.ConclusionStatic anteroposterior and dynamic knee laxities, as presented by QPS, are poorly correlated in the ACL-deficient knee and should therefore be considered as separate entities of the knee examination. These findings strengthen the implementation of non-invasive technology for quantification of the pivot shift when establishing treatment algorithms for ACL reconstruction.Level of evidenceLevel III, prospective cohort.


2020 ◽  
Vol 8 (9_suppl7) ◽  
pp. 2325967120S0052
Author(s):  
Ming Zhou

Introduction: A review of the literature demonstrates that injury of the lateral meniscus, anterolateral capsule, and iliotibial(IT ) band or small lateral tibial plateau aggravate the instability of knee and contributes to a high-grade pivot shift in the ACL-deficient knee. Hypotheses: The hypothesis was that disruption of posterior root of the lateral meniscus will further destabilize the ACL-deficient knee and simulated a high-grade pivot shift but posterior root of medial meniscal not. Methods: 6 fresh-frozen cadaveric knees was performed the next test in a custom activity simulator.1.Determine the effect of PRLMT on the stability of ACL-deficient knee.In the pivot shift test, ITB force (50, 75, 100, 125, 150, and 175 N), internal rotation moments (1, 2, and 3 N.m),and valgus moments (5 and 7 N.m). tibial translation of front drawer test were performed by applying a 90-N anterior


2018 ◽  
Vol 47 (1) ◽  
pp. 96-103 ◽  
Author(s):  
E. Grant Sutter ◽  
Betty Liu ◽  
Gangadhar M. Utturkar ◽  
Margaret R. Widmyer ◽  
Charles E. Spritzer ◽  
...  

Background: Changes in knee kinematics after anterior cruciate ligament (ACL) injury may alter loading of the cartilage and thus affect its homeostasis, potentially leading to the development of posttraumatic osteoarthritis. However, there are limited in vivo data to characterize local changes in cartilage thickness and strain in response to dynamic activity among patients with ACL deficiency. Purpose/Hypothesis: The purpose was to compare in vivo tibiofemoral cartilage thickness and cartilage strain resulting from dynamic activity between ACL-deficient and intact contralateral knees. It was hypothesized that ACL-deficient knees would show localized reductions in cartilage thickness and elevated cartilage strains. Study Design: Controlled laboratory study. Methods: Magnetic resonance images were obtained before and after single-legged hopping on injured and uninjured knees among 8 patients with unilateral ACL rupture. Three-dimensional models of the bones and articular surfaces were created from the pre- and postactivity scans. The pre- and postactivity models were registered to each other, and cartilage strain (defined as the normalized difference in cartilage thickness pre- and postactivity) was calculated in regions across the tibial plateau, femoral condyles, and femoral cartilage adjacent to the medial intercondylar notch. These measurements were compared between ACL-deficient and intact knees. Differences in cartilage thickness and strain between knees were tested with multiple analysis of variance models with alpha set at P < .05. Results: Compressive strain in the intercondylar notch was elevated in the ACL-deficient knee relative to the uninjured knee. Furthermore, cartilage in the intercondylar notch and adjacent medial tibia was significantly thinner before activity in the ACL-deficient knee versus the intact knee. In these 2 regions, thinning was significantly influenced by time since injury, with patients with more chronic ACL deficiency (>1 year since injury) experiencing greater thinning. Conclusion: Among patients with ACL deficiency, the medial femoral condyle adjacent to the intercondylar notch in the ACL-deficient knee exhibited elevated cartilage strain and loss of cartilage thickness, particularly with longer time from injury. It is hypothesized that these changes may be related to posttraumatic osteoarthritis development. Clinical Relevance: This study suggests that altered mechanical loading is related to localized cartilage thinning after ACL injury.


2005 ◽  
Vol &NA; (436) ◽  
pp. 229-236 ◽  
Author(s):  
Zachary Leitze ◽  
Ron E Losee ◽  
Peter Jokl ◽  
Thomas R Johnson ◽  
John A Feagin

2006 ◽  
Vol 39 ◽  
pp. S408
Author(s):  
T.J. Lujan ◽  
B.J. Ellis ◽  
B.M. Thompson ◽  
J.A. Weiss

Sign in / Sign up

Export Citation Format

Share Document