static tests
Recently Published Documents


TOTAL DOCUMENTS

661
(FIVE YEARS 173)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Jinhe Gao ◽  
Jiahuan Xi ◽  
Yuwen Xu ◽  
Baokui Chen ◽  
Dan Zhao ◽  
...  

To avoid brittle fracture and plastic yielding of steel beam-to-column connections under earthquakes, a new beam-to-column connection of steel structures with all-steel buckling restrained braces (BRBs) is proposed. The all-steel BRB is connected to the steel beam and column members through pins to form a new connection system. Taking the T-shaped beam-to-column connection steel structure as the research object, two structural types with an all-steel BRB installed on one side (S-type) and two sides (D-type) are considered. Theoretical equations of the connection system’s initial stiffness and yield load are derived through the mechanical models. The yield load, main strain distribution, energy dissipation, and stiffness of the connection system are investigated through quasi-static tests to verify the connection system’s seismic performance. The tests revealed that the proposed new connection system is capable of achieving a stable hysteresis behavior. At the end of loading, the beam and column members are not damaged, and the plastic deformation is concentrated in the plastic energy dissipating replaceable BRB, and the beam and column basically remain elastic. The proposed equations approximately estimated the load response of the proposed connection system. The results show that the damage mode of this new connection system under seismic loading is BRB yielding, with an elastic response from the beam-column members.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 368
Author(s):  
Marlena Krawczyk-Suszek ◽  
Blanka Martowska ◽  
Rafał Sapuła

Postural stability of the body depends on many factors. One of them is physical activity. It is especially important in the case of sports or professional work, which combine mobility with the accuracy of a shot in a standing position. The smaller the body fatigue, the more accurate the shot. The aim of the study was the assessment of the impact of physical effort on the center of gravity deflection and length of the COP (center of pressure) path, as well as the reaction of ground forces in people who do not engage in systematic physical activity. The study group included 139 people (23.1 ± 5.2 yr; M: 46.8%; F: 53.2%). The test consisted of performing a static test twice, shooting at the target in a multimedia shooting range. Group X performed the Harvard test between the static tests. Group Y made no effort. The reaction parameters of the ground forces were assessed using the Zebris PDM-L Platform. In Group X performing the Harvard test, an increase in the average COP, VCOP, and 95% confidence ellipse area was noted. The path length and the average velocity of COP speed increased. There were no differences in Group Y (p > 0.05). Physical effort significantly affected the postural stability of the studied people, increasing the average parameters assessing balance when adopting static firing position.


Author(s):  
Assylkhan Jalairov ◽  
Dauren Kumar ◽  
Khaini-Kamal Kassymkanova ◽  
Gulshat Murzalina ◽  
Gulnar Jangulova

The article presents results of the overpass condition survey, technical survey, static tests and assessment of the structure operational reliability, a doubledecker overpass on Almaty-Kapshagai highway section in Kazakhstan. Technical survey determined the dimensions of the overpass, the camber of reinforced concrete superstructures main beams and checked the values of the overpass roadway actual transverse and longitudinal slopes. The calculation and analytical assessment of the overpass load-bearing structures, for the strength of the bending moment, are performed. Static tests of the overpass split beam superstructure of a length of 33.0m were conducted. Trucks loaded with ballast were accepted as a test load.


Author(s):  
Miroslaw Graczyk ◽  
Tomasz Mechowski ◽  
Jacek Sudyka ◽  
Maciej Chomicki ◽  
Józef Rafa

2021 ◽  
pp. 109963622110509
Author(s):  
Seyed Mohammad Hossein Mirbagheri ◽  
Mina Salehi

This article investigates the quasi-static compressive behavior and the drop weight impact tests during the crashing of energy-absorbing structures such as aluminum foam-filled tubes. The closed-cell Al and A356 Alloy foams were cast and, after cutting, inserted into the Al thin wall tube as axial fillers of single-, double- and quad-layer structures. Then, the specific energy absorption (SEA), complementary energy (CE), normalized energy (NE), and specific normalized energy (SNE) are calculated based on static and dynamic test results under uniaxial loading. In this new method, values of NE and SNE are always between 0 and 1. Results show that the SEA-strain curves obtained from crashing the foam-filled tubes were linear and overlapping under static and dynamic loading. However, NE curves for dynamic tests were cyclic and in the static tests were asymptotic non-linear, and utterly separable. Results indicated that the SNE for Al, A356 single layer, Al-A356 double-, and Al-A356-Al-A356 quad-layer foam-filled tubes during dynamic tests were 0.25, 0.29, 0.31, and 0.31, while for the static tests, 0.14,0.15, 0.17, and 0.14 were recorded. It was found that CE and NE energies were better than the SEA energy for recognizing plastic deformation and crushing behavior.


2021 ◽  
pp. 41-51
Author(s):  
D. S Lobanov ◽  
E. M Lunegova ◽  
A. I Mugatarov

Aging of composites is a pervasive problem that leads to mechanical properties degradation, reduced design life of a structure and premature accidental failure. The work is devoted to an experimental study of the preliminary temperature aging effect on the residual mechanical properties of structural CFRP. The joint use of test systems and systems for registration and analysis of acoustic emission signals was applied. The Short Beam Shear Test of CFRP specimens were carried out using the short beam method. The tests were carried out on universal electromechanical systems Instron 5882 and Instron 5965 in accordance with the recommendations of ASTM D2344. In the process of loading the samples were continuously recorded by using the acoustic emission signals system AMSY-6. A piezoelectric sensor with a frequency range of 300-800 kHz was used. The test and diagnostic systems were synchronized during the tests. In the course of the work the values of the interlayer shear strength were determined for the samples of CFRP. Typical types of the sample destruction are illustrated. When analyzing the change in the mechanical properties of the carbon fiber reinforced plastic from a temperature increase the critical values of temperatures were established in which a sharp decline in the strength and elastic characteristics of materials occurs due to an active destruction of the binder. The graphs of the energy parameter dependence and frequency characteristics of acoustic emission signals on time have been constructed and analyzed. The estimate of the processes of damage accumulation in composites is carried out. The change of the damage accumulation mechanisms was illustrated. The obtained results illustrate the effect of elevated temperatures and the duration of their impact on the mechanical behavior of structural CFRP specimens during the static tests for the interlayer shear.


Author(s):  
Emre Teker ◽  
Mohd Danish ◽  
Munish Kumar Gupta ◽  
Mustafa Kuntoğlu ◽  
Mehmet Erdi Korkmaz

AbstractIn this paper, the constitutive equation parameters (Johnson–Cook parameters) of the 33MnCrB5 material were determined with the help of tensile tests. Initially, Johnson–Cook (JC) model was used for performing the simulations of the sample with finite element analysis with the help of ANSYS software. For these operations, the sample was first used at a certain temperature (24 °C) and low strain rates (10−1, 10−2, 10−3 s−1) and quasi-static tensile tests were performed. Then, high temperature tensile tests were performed with strain rate values of 10−3 s−1 at temperatures of 300 °C, 600 °C, and 900 °C, respectively. Finally, JC parameters belonging to test materials were found in accordance with the results obtained from the high temperature tensile and quasi-static tests. In the last stage, the results obtained from the simulation software for the yield stress, maximum stress, and elongation values were compared with the experimental results. As a result, deviation values for quasi-static tests are calculated as 5.04% at yield stress, 5.57% at maximum stress, and 5.68% at elongation, while for high temperature, yield stress is 9.42%, maximum stress is 11.49% and the elongation value is 7.63%. The accuracy of JC parameters was verified with the comparison made with the obtained data.


2021 ◽  
pp. 103824
Author(s):  
Seyedsajjad Hosseini ◽  
João Guerreiro ◽  
Luís Guerreiro ◽  
Rita Moura ◽  
João Gomes Ferreira

2021 ◽  
Vol 21 (4) ◽  
pp. 112-121
Author(s):  
Władysław Zielecki ◽  
Katarzyna Burnat ◽  
Andrzej Kubit ◽  
Tomáš Katrňák

Abstract The paper presents the results of experimental research aimed at determining the possibilities of strengthening structural adhesive joints. Techniques to improve the strength of adhesive joints was to make holes in the front part of the adherends in order to make the joint locally more flexible in the area of stress concentration at the joint edges. The tests were carried out for the lap joints of EN AW-2024-T3 aluminum alloy sheets, which were bonded with Loctite EA3430 epoxy adhesive. Static tests were carried out on the basis of the tensile/shear test. It has been shown that the applied structural modifications allow for an increase in the strength of the joint, in the best variant, an increase in strength of 14.5% was obtained. In addition, it has been shown that making holes in the adherends allows to reduce the spread of strength results.


Author(s):  
S. Postelga ◽  

The purpose of research is determination of cabin deformation indicators using standardized methods and developed technical means. Research methods. The tests were performed according to the methods described in [DSTU ISO 5700, 2019] using a loading bench, pressure and displacement sensors, digital measuring amplifier Spider 8 and laptop Panasonic CF-19 Touchbook, model: CF-19KHR88PE. Research results. The protective structure AI.209.45.011.00 of the cab of tractors type C25 "Slobozhanets" was provided for testing. Before the tests, the dimensions of the cab structure were measured and recorded. During the first longitudinal loading from front to right, the load was applied to the upper transverse element of the protective structure. The point of application of the load was at a distance of 260 mm from the outer corner of the edge of the protective structure. An even load distribution in the direction perpendicular to the direction of action and along the loading beam was ensured using a sealing element. The value of the energy absorbed by the protective structure was 13100 J (required energy - 12586 J) with a maximum applied force of 82 kN and a displacement of 340 mm. During the first and second compression tests, the structure was loaded vertically with a force of 180 kN along the front and rear upper transverse elements of the protective structure with a holding of the specified force for 5 s. The side load was applied horizontally to the upper right longitudinal element of the protective structure at a distance of 85 mm forward from the control point of the driver's seat. The length of the loading beam was 600 mm. The value of the energy absorbed by the protective structure of 17000 J (required energy - 15732 J) at a maximum applied force of 80 kN and a displacement of 290 mm was achieved. After all test stages, the frontmost point of the protective structure was 70 mm and the front left point was 35 mm. The rear end points were also shifted backwards by 45 mm - right and 30 mm - left. In the lateral direction, the front right extreme point moved forward by 15 mm. After the tests, the free space area was not violated. Conclusions. The methods and technical means used during the tests allow determine the magnitude of the applied forces and deformation with the necessary accuracy and reliability. During the compression tests, the values of the test force (180 kN) were achieved, and during the application of horizontal loads - the energy absorbed by the protective structure (13100 J - longitudinal load and 17000 J - lateral load). The greatest final deformation was suffered by the protective structure at the front extreme point - 70 mm, while the violation of the zone of free space of the driver by the elements of the protective structure is not observed. Therefore, the protective structure AI.209.45.011.00 cab of tractors type C25 "Slobozhanets" withstood static tests for compliance with DSTU ISO 5700.


Sign in / Sign up

Export Citation Format

Share Document