Significant and serious dehydration does not affect skeletal muscle cramp threshold frequency

2012 ◽  
Vol 47 (11) ◽  
pp. 710-714 ◽  
Author(s):  
Kyle W Braulick ◽  
Kevin C Miller ◽  
Jay M Albrecht ◽  
Jared M Tucker ◽  
James E Deal
2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S282
Author(s):  
M B. Stone ◽  
J E. Edwards ◽  
J P. Babington ◽  
C D. Ingersoll ◽  
M L. Cordova

2020 ◽  
Author(s):  
Kazuyo Tasaki ◽  
Penelope J. Noble ◽  
Alan Garny ◽  
Paul R. Shorten ◽  
Nima Afshar ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


2020 ◽  
Author(s):  
Kazuyo Tasaki ◽  
Denis Noble ◽  
Penelope J. Noble ◽  
Paul R. Shorten ◽  
Alan Garny ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


2020 ◽  
Author(s):  
Kazuyo Tasaki ◽  
Penelope J. Noble ◽  
Alan Garny ◽  
Paul R. Shorten ◽  
Nima Afshar ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


Author(s):  
Joshua D Williamson ◽  
James E Leone ◽  
Jeffrey Edwards ◽  
Marcus B Stone ◽  
Timothy J Demchak

2016 ◽  
Vol 21 (8) ◽  
pp. 809-814 ◽  
Author(s):  
Michael Behringer ◽  
Volker Spieth ◽  
Johannes Caspar Konrad Montag ◽  
Steffen Willwacher ◽  
Molly Leigh McCourt ◽  
...  

2012 ◽  
Vol 21 (2) ◽  
pp. 182-185 ◽  
Author(s):  
Kevin C. Miller ◽  
Kenneth L. Knight ◽  
Steven R. Wilding ◽  
Marcus B. Stone

Context:Electrically induced muscle cramps (EIMC) do not last long enough to study many cramp treatments. Increasing stimulation frequency lengthens cramp duration; it is unknown which frequency elicits the longest EIMC.Objective:To determine which stimulation frequency elicits the longest EIMC and whether cramp duration and stimulation frequency are correlated.Design:Randomized, crossover.Setting:Laboratory.Participants:20 participants (12 male, 8 female; age 20.7 ± 0.6 y; height 174.9 ± 1.9 cm; mass 76.6 ± 2.2 kg) with a self-reported history of muscle cramps in their lower extremities within the 6 mo before the study.Interventions:The dominant leg’s tibial nerve was percutaneously stimulated with 2-s-duration electrical stimuli trains starting at a frequency of 4 Hz. After 1 min of rest, stimulation frequency increased in 2-Hz increments until a cramp occurred in the flexor hallucis brevis. The stimulation frequency at which a cramp occurred was termed cramp threshold frequency (TF). Cramp duration was determined using strict clinical criteria (loss of hallux rigidity and return of hallux neutral). On the next 4 consecutive days, participants were stimulated at 5, 10, 15, or 20 Hz above TF, and cramp duration was reassessed.Main Outcome Measures:Cramp TF and duration.Results:Cramp TF was 16.9 ± 5.1 Hz. Cramp duration was longer at 15 and 20 Hz above TF (77.9 ± 37.6 s and 69.5 ± 36.9 s, respectively) than at TF (40.8 ± 34.0 s; P < .05). Cramp duration and TF were highly correlated (r = .90). Conclusions: Stimulating at 15 and 20 Hz above cramp TF produces the longest-lasting EIMC.


2020 ◽  
Author(s):  
Kazuyo Tasaki ◽  
Denis Noble ◽  
Penelope J. Noble ◽  
Paul R. Shorten ◽  
Alan Garny ◽  
...  

In an accompanying paper [2], we developed the Shorten [3] model of skeletal muscle by incorporating equations such as surface calcium fluxes. In further research in this paper, we succeeded in reproducing muscle cramp, as well as its prevention and reversal, by investigating muscle contraction and cramp, in which calcium regulatory networks are involved, using the extended model in comparison with the original model. Incorporation of data from a traditional medicine from root extracts of paeony and licorice and one of its pure chemicals was modeled. The sensitivity analysis of the extended model shows the robustness of the calcium regulatory networks. Muscle cramp, in the extended model, requires calcium influx via the L-type calcium channel and it will not occur without calcium influx. Reduced calcium influx can delay or prevent cramp. Increased interstitial potassium is implicated in developing and maintaining cramp. Mechanism of reversal of cramp requires wash-out of extracellular potassium via increased blood flow, followed by calcium efflux via sodium-calcium exchange. This paper shows the first successful quantitative electrophysiological and mechanical model of cramp and of its reversal.


Sign in / Sign up

Export Citation Format

Share Document