scholarly journals Inexact Newton Regularization Using Conjugate Gradients as Inner Iteration

2005 ◽  
Vol 43 (2) ◽  
pp. 604-622 ◽  
Author(s):  
Andreas Rieder
1994 ◽  
Vol 03 (03) ◽  
pp. 339-348
Author(s):  
CARL G. LOONEY

We review methods and techniques for training feedforward neural networks that avoid problematic behavior, accelerate the convergence, and verify the training. Adaptive step gain, bipolar activation functions, and conjugate gradients are powerful stabilizers. Random search techniques circumvent the local minimum trap and avoid specialization due to overtraining. Testing assures quality learning.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaowei Fang ◽  
Qin Ni

In this paper, we propose a new hybrid direct search method where a frame-based PRP conjugate gradients direct search algorithm is combined with radial basis function interpolation model. In addition, the rotational minimal positive basis is used to reduce the computation work at each iteration. Numerical results for solving the CUTEr test problems show that the proposed method is promising.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yu-Ye Feng ◽  
Qing-Biao Wu

For solving the large sparse linear systems with 2 × 2 block structure, the generalized successive overrelaxation (GSOR) iteration method is an efficient iteration method. Based on the GSOR method, the PGSOR method introduces a preconditioned matrix with a new parameter for the coefficient matrix which can enhance the efficiency. To solve the nonlinear systems in which the Jacobian matrices are complex and symmetric with the block two-by-two form, we try to use the PGSOR method as an inner iteration, with the help of the modified Newton method as an efficient outer iteration method. This new method is called the modified Newton-PGSOR (MN-PGSOR) method. Local convergence properties of the MN-PGSOR are analyzed under the Hölder condition. Finally, we give the comparison of our new method with some previous methods in the numerical results. The MN-PGSOR method is superior in both iteration steps and computing time.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Tinggui Chen ◽  
Renbin Xiao

Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document