Global Dynamics of a Predator-Prey Model with Stage Structure for the Predator

2007 ◽  
Vol 67 (5) ◽  
pp. 1379-1395 ◽  
Author(s):  
Paul Georgescu ◽  
Ying-Hen Hsieh
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Lili Wang ◽  
Rui Xu

A Holling type II predator-prey model with time delay and stage structure for the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is discussed. The existence of Hopf bifurcations at the coexistence equilibrium is established. By means of the persistence theory on infinite dimensional systems, it is proven that the system is permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle’s invariance principle, it is shown that the predator-extinction equilibrium is globally asymptotically stable when the coexistence equilibrium is not feasible, and the sufficient conditions are obtained for the global stability of the coexistence equilibrium.


2015 ◽  
Vol 25 (01) ◽  
pp. 1550012 ◽  
Author(s):  
P. Tchinda Mouofo ◽  
R. Djidjou Demasse ◽  
J. J. Tewa ◽  
M. A. Aziz-Alaoui

A delay predator–prey model is formulated with continuous threshold prey harvesting and Holling response function of type III. Global qualitative and bifurcation analyses are combined to determine the global dynamics of the model. The positive invariance of the non-negative orthant is proved and the uniform boundedness of the trajectories. Stability of equilibria is investigated and the existence of some local bifurcations is established: saddle-node bifurcation, Hopf bifurcation. We use optimal control theory to provide the correct approach to natural resource management. Results are also obtained for optimal harvesting. Numerical simulations are given to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document