scholarly journals Multilevel Quasi Monte Carlo Methods for Elliptic PDEs with Random Field Coefficients via Fast White Noise Sampling

2021 ◽  
Vol 43 (4) ◽  
pp. A2840-A2868
Author(s):  
Matteo Croci ◽  
Michael Giles ◽  
Patrick E. Farrell
2019 ◽  
Vol 53 (5) ◽  
pp. 1507-1552 ◽  
Author(s):  
L. Herrmann ◽  
C. Schwab

We analyze the convergence rate of a multilevel quasi-Monte Carlo (MLQMC) Finite Element Method (FEM) for a scalar diffusion equation with log-Gaussian, isotropic coefficients in a bounded, polytopal domain D ⊂ ℝd. The multilevel algorithm QL* which we analyze here was first proposed, in the case of parametric PDEs with sequences of independent, uniformly distributed parameters in Kuo et al. (Found. Comput. Math. 15 (2015) 411–449). The random coefficient is assumed to admit a representation with locally supported coefficient functions, as arise for example in spline- or multiresolution representations of the input random field. The present analysis builds on and generalizes our single-level analysis in Herrmann and Schwab (Numer. Math. 141 (2019) 63–102). It also extends the MLQMC error analysis in Kuo et al. (Math. Comput. 86 (2017) 2827–2860), to locally supported basis functions in the representation of the Gaussian random field (GRF) in D, and to product weights in QMC integration. In particular, in polytopal domains D ⊂ ℝd, d=2,3, our analysis is based on weighted function spaces to describe solution regularity with respect to the spatial coordinates. These spaces allow GRFs and PDE solutions whose realizations become singular at edges and vertices of D. This allows for non-stationary GRFs whose covariance operators and associated precision operator are fractional powers of elliptic differential operators in D with boundary conditions on ∂D. In the weighted function spaces in D, first order, Lagrangian Finite Elements on regular, locally refined, simplicial triangulations of D yield optimal asymptotic convergence rates. Comparison of the ε-complexity for a class of Matérn-like GRF inputs indicates, for input GRFs with low sample regularity, superior performance of the present MLQMC-FEM with locally supported representation functions over alternative representations, e.g. of Karhunen–Loève type. Our analysis yields general bounds for the ε-complexity of the MLQMC algorithm, uniformly with respect to the dimension of the parameter space.


2011 ◽  
Vol 230 (10) ◽  
pp. 3668-3694 ◽  
Author(s):  
I.G. Graham ◽  
F.Y. Kuo ◽  
D. Nuyens ◽  
R. Scheichl ◽  
I.H. Sloan

2017 ◽  
Vol 86 (308) ◽  
pp. 2827-2860 ◽  
Author(s):  
Frances Y. Kuo ◽  
Robert Scheichl ◽  
Christoph Schwab ◽  
Ian H. Sloan ◽  
Elisabeth Ullmann

2013 ◽  
Vol 125 (3) ◽  
pp. 569-600 ◽  
Author(s):  
A. L. Teckentrup ◽  
R. Scheichl ◽  
M. B. Giles ◽  
E. Ullmann

Author(s):  
Dong T.P. Nguyen ◽  
Dirk Nuyens

We introduce the \emph{multivariate decomposition finite element method} (MDFEM) for elliptic PDEs with lognormal diffusion coefficients, that is, when the diffusion coefficient has the form $a=\exp(Z)$ where $Z$ is a Gaussian random field defined by an infinite series expansion $Z(\bsy) = \sum_{j \ge 1} y_j \, \phi_j$ with $y_j \sim \calN(0,1)$ and a given sequence of functions $\{\phi_j\}_{j \ge 1}$. We use the MDFEM to approximate the expected value of a linear functional of the solution of the PDE which is an infinite-dimensional integral over the parameter space. The proposed algorithm uses the \emph{multivariate decomposition method} (MDM) to compute the infinite-dimensional integral by a decomposition into finite-dimensional integrals, which we resolve using \emph{quasi-Monte Carlo} (QMC) methods, and for which we use the \emph{finite element method} (FEM) to solve different instances of the PDE.   We develop higher-order quasi-Monte Carlo rules for integration over the finite-di\-men\-si\-onal Euclidean space with respect to the Gaussian distribution by use of a truncation strategy. By linear transformations of interlaced polynomial lattice rules from the unit cube to a multivariate box of the Euclidean space we achieve higher-order convergence rates for functions belonging to a class of \emph{anchored Gaussian Sobolev spaces} while taking into account the truncation error. These cubature rules are then used in the MDFEM algorithm.   Under appropriate conditions, the MDFEM achieves higher-order convergence rates in term of error versus cost, i.e., to achieve an accuracy of $O(\epsilon)$ the computational cost is $O(\epsilon^{-1/\lambda-\dd/\lambda}) = O(\epsilon^{-(p^* + \dd/\tau)/(1-p^*)})$ where $\epsilon^{-1/\lambda}$ and $\epsilon^{-\dd/\lambda}$ are respectively the cost of the quasi-Monte Carlo cubature and the finite element approximations, with $\dd = d \, (1+\ddelta)$ for some $\ddelta \ge 0$ and $d$ the physical dimension, and $0 < p^* \le (2 + \dd/\tau)^{-1}$ is a parameter representing the sparsity of $\{\phi_j\}_{j \ge 1}$.


Sign in / Sign up

Export Citation Format

Share Document