Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients

2019 ◽  
Vol 53 (5) ◽  
pp. 1507-1552 ◽  
Author(s):  
L. Herrmann ◽  
C. Schwab

We analyze the convergence rate of a multilevel quasi-Monte Carlo (MLQMC) Finite Element Method (FEM) for a scalar diffusion equation with log-Gaussian, isotropic coefficients in a bounded, polytopal domain D ⊂ ℝd. The multilevel algorithm QL* which we analyze here was first proposed, in the case of parametric PDEs with sequences of independent, uniformly distributed parameters in Kuo et al. (Found. Comput. Math. 15 (2015) 411–449). The random coefficient is assumed to admit a representation with locally supported coefficient functions, as arise for example in spline- or multiresolution representations of the input random field. The present analysis builds on and generalizes our single-level analysis in Herrmann and Schwab (Numer. Math. 141 (2019) 63–102). It also extends the MLQMC error analysis in Kuo et al. (Math. Comput. 86 (2017) 2827–2860), to locally supported basis functions in the representation of the Gaussian random field (GRF) in D, and to product weights in QMC integration. In particular, in polytopal domains D ⊂ ℝd, d=2,3, our analysis is based on weighted function spaces to describe solution regularity with respect to the spatial coordinates. These spaces allow GRFs and PDE solutions whose realizations become singular at edges and vertices of D. This allows for non-stationary GRFs whose covariance operators and associated precision operator are fractional powers of elliptic differential operators in D with boundary conditions on ∂D. In the weighted function spaces in D, first order, Lagrangian Finite Elements on regular, locally refined, simplicial triangulations of D yield optimal asymptotic convergence rates. Comparison of the ε-complexity for a class of Matérn-like GRF inputs indicates, for input GRFs with low sample regularity, superior performance of the present MLQMC-FEM with locally supported representation functions over alternative representations, e.g. of Karhunen–Loève type. Our analysis yields general bounds for the ε-complexity of the MLQMC algorithm, uniformly with respect to the dimension of the parameter space.

2018 ◽  
Vol 39 (3) ◽  
pp. 1563-1593 ◽  
Author(s):  
Yoshihito Kazashi

Abstract Quasi–Monte Carlo (QMC) integration of output functionals of solutions of the diffusion problem with a log-normal random coefficient is considered. The random coefficient is assumed to be given by an exponential of a Gaussian random field that is represented by a series expansion of some system of functions. Graham et al. (2015, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math., 131, 329–368) developed a lattice-based QMC theory for this problem and established a quadrature error decay rate ≈ 1 with respect to the number of quadrature points. The key assumption there was a suitable summability condition on the aforementioned system of functions. As a consequence, product-order-dependent weights were used to construct the lattice rule. In this paper, a different assumption on the system is considered. This assumption, originally considered by Bachmayr et al. (2017c, Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM Math. Model. Numer. Anal., 51, 321–339) to utilise the locality of support of basis functions in the context of polynomial approximations applied to the same type of the diffusion problem, is shown to work well in the same lattice-based QMC method considered by Graham et al.: the assumption leads us to product weights, which enables the construction of the QMC method with a smaller computational cost than Graham et al. A quadrature error decay rate ≈ 1 is established, and the theory developed here is applied to a wavelet stochastic model. By a characterisation of the Besov smoothness, it is shown that a wide class of path smoothness can be treated with this framework.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1113
Author(s):  
Ahmed El-Sayed Ahmed ◽  
Amnah E. Shammaky

Some weighted-type classes of holomorphic function spaces were introduced in the current study. Moreover, as an application of the new defined classes, the specific growth of certain entire-solutions of a linear-type differential equation by the use of concerned coefficients of certain analytic-type functions, that is the equation h(k)+Kk−1(υ)h(k−1)+…+K1(υ)h′+K0(υ)h=0, will be discussed in this current research, whereas the considered coefficients K0(υ),…,Kk−1(υ) are holomorphic in the disc ΓR={υ∈C:|υ|<R},0<R≤∞. In addition, some non-trivial specific examples are illustrated to clear the roles of the obtained results with some sharpness sense. Hence, the obtained results are strengthen to some previous interesting results from the literature.


Author(s):  
Dong T.P. Nguyen ◽  
Dirk Nuyens

We introduce the \emph{multivariate decomposition finite element method} (MDFEM) for elliptic PDEs with lognormal diffusion coefficients, that is, when the diffusion coefficient has the form $a=\exp(Z)$ where $Z$ is a Gaussian random field defined by an infinite series expansion $Z(\bsy) = \sum_{j \ge 1} y_j \, \phi_j$ with $y_j \sim \calN(0,1)$ and a given sequence of functions $\{\phi_j\}_{j \ge 1}$. We use the MDFEM to approximate the expected value of a linear functional of the solution of the PDE which is an infinite-dimensional integral over the parameter space. The proposed algorithm uses the \emph{multivariate decomposition method} (MDM) to compute the infinite-dimensional integral by a decomposition into finite-dimensional integrals, which we resolve using \emph{quasi-Monte Carlo} (QMC) methods, and for which we use the \emph{finite element method} (FEM) to solve different instances of the PDE.   We develop higher-order quasi-Monte Carlo rules for integration over the finite-di\-men\-si\-onal Euclidean space with respect to the Gaussian distribution by use of a truncation strategy. By linear transformations of interlaced polynomial lattice rules from the unit cube to a multivariate box of the Euclidean space we achieve higher-order convergence rates for functions belonging to a class of \emph{anchored Gaussian Sobolev spaces} while taking into account the truncation error. These cubature rules are then used in the MDFEM algorithm.   Under appropriate conditions, the MDFEM achieves higher-order convergence rates in term of error versus cost, i.e., to achieve an accuracy of $O(\epsilon)$ the computational cost is $O(\epsilon^{-1/\lambda-\dd/\lambda}) = O(\epsilon^{-(p^* + \dd/\tau)/(1-p^*)})$ where $\epsilon^{-1/\lambda}$ and $\epsilon^{-\dd/\lambda}$ are respectively the cost of the quasi-Monte Carlo cubature and the finite element approximations, with $\dd = d \, (1+\ddelta)$ for some $\ddelta \ge 0$ and $d$ the physical dimension, and $0 < p^* \le (2 + \dd/\tau)^{-1}$ is a parameter representing the sparsity of $\{\phi_j\}_{j \ge 1}$.


2019 ◽  
Vol 77 (1) ◽  
pp. 144-172 ◽  
Author(s):  
Josef Dick ◽  
Robert N. Gantner ◽  
Quoc T. Le Gia ◽  
Christoph Schwab

Sign in / Sign up

Export Citation Format

Share Document