Threshold Strategies in Optimal Stopping Problem for One-Dimensional Diffusion Processes

2015 ◽  
Vol 59 (2) ◽  
pp. 311-319 ◽  
Author(s):  
V. I. Arkin
2005 ◽  
Vol 12 (4) ◽  
pp. 693-696
Author(s):  
Giorgi Lominashvili

Abstract An approximation order of the optimal stopping problem for multidimensional diffusion processes by the corresponding semidiscretization is considered.


2017 ◽  
Vol 54 (3) ◽  
pp. 963-969 ◽  
Author(s):  
Vadim Arkin ◽  
Alexander Slastnikov

Abstract We study a problem when the optimal stopping for a one-dimensional diffusion process is generated by a threshold strategy. Namely, we give necessary and sufficient conditions (on the diffusion process and the payoff function) under which a stopping set has a threshold structure.


2014 ◽  
Vol 13 (04) ◽  
pp. 1430001 ◽  
Author(s):  
Jaume Masoliver

We review the level-crossing problem which includes the first-passage and escape problems as well as the theory of extreme values (the maximum, the minimum, the maximum absolute value and the range or span). We set the definitions and general results and apply them to one-dimensional diffusion processes with explicit results for the Brownian motion and the Ornstein–Uhlenbeck (OU) process.


1997 ◽  
Vol 34 (3) ◽  
pp. 623-631 ◽  
Author(s):  
R. Gutiérrez ◽  
L. M. Ricciardi ◽  
P. Román ◽  
F. Torres

In this paper we study a Volterra integral equation of the second kind, including two arbitrary continuous functions, in order to determine first-passage-time probability density functions through time-dependent boundaries for time-non-homogeneous one-dimensional diffusion processes with natural boundaries. These results generalize those which were obtained for time-homogeneous diffusion processes by Giorno et al. [3], and for some particular classes of time-non-homogeneous diffusion processes by Gutiérrez et al. [4], [5].


Sign in / Sign up

Export Citation Format

Share Document