scholarly journals Erratum: Sensitivity Analysis of the Value Function for Optimization Problems With Variational Inequality Constraints

2002 ◽  
Vol 41 (4) ◽  
pp. 1315-1319 ◽  
Author(s):  
Yves Lucet ◽  
Jane J. Ye
2010 ◽  
Vol 42 (1) ◽  
pp. 158-182 ◽  
Author(s):  
Kurt Helmes ◽  
Richard H. Stockbridge

A new approach to the solution of optimal stopping problems for one-dimensional diffusions is developed. It arises by imbedding the stochastic problem in a linear programming problem over a space of measures. Optimizing over a smaller class of stopping rules provides a lower bound on the value of the original problem. Then the weak duality of a restricted form of the dual linear program provides an upper bound on the value. An explicit formula for the reward earned using a two-point hitting time stopping rule allows us to prove strong duality between these problems and, therefore, allows us to either optimize over these simpler stopping rules or to solve the restricted dual program. Each optimization problem is parameterized by the initial value of the diffusion and, thus, we are able to construct the value function by solving the family of optimization problems. This methodology requires little regularity of the terminal reward function. When the reward function is smooth, the optimal stopping locations are shown to satisfy the smooth pasting principle. The procedure is illustrated using two examples.


2010 ◽  
Vol 42 (01) ◽  
pp. 158-182 ◽  
Author(s):  
Kurt Helmes ◽  
Richard H. Stockbridge

A new approach to the solution of optimal stopping problems for one-dimensional diffusions is developed. It arises by imbedding the stochastic problem in a linear programming problem over a space of measures. Optimizing over a smaller class of stopping rules provides a lower bound on the value of the original problem. Then the weak duality of a restricted form of the dual linear program provides an upper bound on the value. An explicit formula for the reward earned using a two-point hitting time stopping rule allows us to prove strong duality between these problems and, therefore, allows us to either optimize over these simpler stopping rules or to solve the restricted dual program. Each optimization problem is parameterized by the initial value of the diffusion and, thus, we are able to construct the value function by solving the family of optimization problems. This methodology requires little regularity of the terminal reward function. When the reward function is smooth, the optimal stopping locations are shown to satisfy the smooth pasting principle. The procedure is illustrated using two examples.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1109 ◽  
Author(s):  
Agnieszka Wiszniewska-Matyszkiel ◽  
Rajani Singh

We study general classes of discrete time dynamic optimization problems and dynamic games with feedback controls. In such problems, the solution is usually found by using the Bellman or Hamilton–Jacobi–Bellman equation for the value function in the case of dynamic optimization and a set of such coupled equations for dynamic games, which is not always possible accurately. We derive general rules stating what kind of errors in the calculation or computation of the value function do not result in errors in calculation or computation of an optimal control or a Nash equilibrium along the corresponding trajectory. This general result concerns not only errors resulting from using numerical methods but also errors resulting from some preliminary assumptions related to replacing the actual value functions by some a priori assumed constraints for them on certain subsets. We illustrate the results by a motivating example of the Fish Wars, with singularities in payoffs.


Author(s):  
Joseph D’Ambrosio ◽  
Timothy Darr ◽  
William Birmingham

Abstract In this paper, we describe a multi-attribute domain CSP approach for solving a class of discrete, constrained, optimization problems. The multi-attribute domain CSP formulation provides a compact representation for design problems characterized by multiple, conflicting attributes. Design trade-off information is represented by a multi-attribute value function. Necessary conditions for an optimal solution, defined in terms of the value function, are represented as constraints. This provides a uniform problem-solving approach (constraint satisfaction) for identifying solutions that are both feasible and of high value. We present and characterize a consistency algorithm for this type of CSP.


Sign in / Sign up

Export Citation Format

Share Document